首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mineral Systems Analysis and Artificial Neural Network Modeling of Chromite Prospectivity in the Western Limb of the Bushveld Complex,South Africa
Authors:Abera Tessema
Institution:1.Geology Division,University of Limpopo,Turfloop,South Africa
Abstract:Radial basis function link neural network (RBFLN) and fuzzy-weights of evidence (fuzzy-WofE) methods were used to assess regional-scale prospectivity for chromite deposits in the Western Limb and the Nietverdiend layered mafic intrusion of the Bushveld Complex in South Africa. Five predictor maps derived from geological, geochemical and geophysical data were processed in a GIS environment and used as spatial proxy for critical processes that were most probably responsible for the formation of the chromite deposits in the study area. The RBFLN was trained using input feature vectors that correspond to known deposits, prospects and non-deposits. The training was initiated by varying the number of radial basis functions (RBFs) and iterations. The results of training the RBFLN provided optimum number of RBFs and iterations that were used for classification of the input feature vectors. The results show that the network classified 73% of the validation deposits into highly prospective areas for chromite deposit, covering 6.5% of the study area. The RBFLN entirely classified all the non-deposit validation points into low prospectivity areas, occupying 86.6% of the study area. In general, the efficiency of the RBFLN in classifying the validation deposits and non-deposits indicates the degree of spatial relationship between the input feature vectors and the training points, which represent chrome mines and prospects. The RBFLN and fuzzy-WofE analyses used in this study are important in guiding identification of regional-scale prospect areas where further chromite exploration can be carried out.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号