首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Benchmark computations for flows around a stationary cylinder with high Reynolds numbers by RANS-overset grid approach
Institution:1. Department of Aerospace Engineering, Iowa State University, Ames, IA 50011, USA;2. Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
Abstract:The aim of this paper is to evaluate the accuracy, stability and efficiency of the overset grid approach coupled with the RANS (Reynolds Averaged Navier-Stokes) model via the benchmark computations of flows around a stationary smooth circular cylinder. Two dimensional numerical results are presented within a wide range of Reynolds numbers (6.31 × 104  7.57 × 105) including the critical flow regime. All the simulations are carried out using the RANS solver pimpleFoam provided by OpenFOAM, an open source CFD (Computational Fluid Dynamics) toolkit. Firstly, a grid convergence study is performed. The results of the time-averaged drag and lift force coefficients, root-mean square value of lift force coefficient and Strouhal number (St number) are then compared with the experimental data. The velocity, vorticity fields and pressure distribution are also given. One main conclusion is that the numerical solutions in regard to a fixed cylinderare not deteriorated due to the implementation of the overset grid. Furthermore, it can be an appealing approach to facilitate simulations of Vortex Induced Vibrations (VIV), which involves grid deformation. The present study is a good start to implement the overset grid to solve VIV problems in the future.
Keywords:Stationary cylinder  RANS simualtion  Overset grid  High Reynolds numbers  Benchmark computations
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号