首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Measurement of platform conductor preload in streamlining the life extensions of ageing offshore wells
Institution:1. Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia;2. School of Engineering, University of Edinburgh, Edinburgh EH8 9YL, UK;3. Azakti Energy Ltd., Covent Garden, London WC2H 9JQ, UK;1. ARC DECRA Fellow, Centre for Offshore Foundation Systems (COFS), The University of Western Australia, 35 Stirling highway, Crawley, WA 6009, Australia;2. Centre for Offshore Foundation Systems, The University of Western Australia, Australia;1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China;2. Tianjin Branch of China National Offshore Oil Corporation, Tianjin 300452, China;1. School of Marine Science and Technology, Northwestern Polytechnical University, Shaanxi, China;2. College of Electromechanical Engineering, Qingdao University of Science and Technology, Shandong, China;3. Marine Engineering Department, Qingdao Ocean Shipping Mariners College, Shandong, China
Abstract:The life extension of ageing oil wells is becoming an ever more crucial part of an operator's activities in recent years, mainly due to slumping oil price which discourages new exploration and the potential extended operation of some older fields with sufficient producing capacity still remaining. The conductor forms one of the primary structural components of wells and its deterioration over time warrants immediate integrity assessment and rehabilitation plans. The construction residual loading or preloads on the conductor are calculated as per standard guidelines and by analytical means during its design and installation phase, but may not be realistic when assessing aged conductors, due to the high levels of over-conservatism built in to address the various uncertainties during the well drilling phase, hence a more practical means of evaluating this residual load is required in carrying out the integrity assessments. This article presents the novel use of ultrasonic based non-destructive technique (NDT) to measure the conductor preload by observing the travel time of the longitudinal critical refracted (LCR) waves and employing the acoustoelastic method to determine the structural stresses. The measurement of the time of flight (TOF) of this wave component is evaluated from the signals measurement under a range of preload stresses induced into the specimen, and the acoustoelastic calibration curve is obtained as a result, for various section geometries and dimensions. Numerical analyses are also carried out to correlate and validate the magnitude order of the acoustoelastic constant of typical conductor steel grade (grade-B). These are in good agreement with each other and can be a very reliable tool for the on-site preload measurements during oil well integrity assessment. This measurement of conductor preload results in minimising any associated uncertainties, assumptions and the corresponding over-conservatisms carried over from the design stage, hence streamlining the repair and rehabilitation strategies to the most critical well-conductor groups in the field, thus significantly reducing the costs and resources for operators in extending life of aged wells.
Keywords:Conductor preload  Well integrity  Life extension  Acoustoelasticity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号