首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaluation of model complexity and space–time resolution on the prediction of long‐term soil salinity dynamics,western San Joaquin Valley,California
Authors:G Schoups  J W Hopmans  K K Tanji
Abstract:The numerical simulation of long‐term large‐scale (field to regional) variably saturated subsurface flow and transport remains a computational challenge, even with today's computing power. Therefore, it is appropriate to develop and use simplified models that focus on the main processes operating at the pertinent time and space scales, as long as the error introduced by the simpler model is small relative to the uncertainties associated with the spatial and temporal variation of boundary conditions and parameter values. This study investigates the effects of various model simplifications on the prediction of long‐term soil salinity and salt transport in irrigated soils. Average root‐zone salinity and cumulative annual drainage salt load were predicted for a 10‐year period using a one‐dimensional numerical flow and transport model (i.e. UNSATCHEM) that accounts for solute advection, dispersion and diffusion, and complex salt chemistry. The model uses daily values for rainfall, irrigation, and potential evapotranspiration rates. Model simulations consist of benchmark scenarios for different hypothetical cases that include shallow and deep water tables, different leaching fractions and soil gypsum content, and shallow groundwater salinity, with and without soil chemical reactions. These hypothetical benchmark simulations are compared with the results of various model simplifications that considered (i) annual average boundary conditions, (ii) coarser spatial discretization, and (iii) reducing the complexity of the salt‐soil reaction system. Based on the 10‐year simulation results, we conclude that salt transport modelling does not require daily boundary conditions, a fine spatial resolution, or complex salt chemistry. Instead, if the focus is on long‐term salinity, then a simplified modelling approach can be used, using annually averaged boundary conditions, a coarse spatial discretization, and inclusion of soil chemistry that only accounts for cation exchange and gypsum dissolution–precipitation. We also demonstrate that prediction errors due to these model simplifications may be small, when compared with effects of parameter uncertainty on model predictions. The proposed model simplifications lead to larger time steps and reduced computer simulation times by a factor of 1000. Copyright © 2006 John Wiley & Sons, Ltd.
Keywords:soil salinity  gypsum  unsaturated flow  multicomponent transport  major ion chemistry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号