首页 | 本学科首页   官方微博 | 高级检索  
     检索      

锑的地球化学性质与华南锑矿带成因初探
引用本文:张天羽,李聪颖,孙赛军,郝锡荦.锑的地球化学性质与华南锑矿带成因初探[J].岩石学报,2020,36(1):44-54.
作者姓名:张天羽  李聪颖  孙赛军  郝锡荦
作者单位:中国科学院海洋研究所, 深海研究中心, 青岛 266071;青岛海洋科学与技术试点国家实验室, 海洋矿产资源评价与探测技术功能实验室, 青岛 266237;中国科学院海洋大科学研究中心, 青岛 266071,中国科学院海洋研究所, 深海研究中心, 青岛 266071;青岛海洋科学与技术试点国家实验室, 海洋矿产资源评价与探测技术功能实验室, 青岛 266237;中国科学院海洋大科学研究中心, 青岛 266071,中国科学院海洋研究所, 深海研究中心, 青岛 266071;青岛海洋科学与技术试点国家实验室, 海洋矿产资源评价与探测技术功能实验室, 青岛 266237;中国科学院海洋大科学研究中心, 青岛 266071,自然资源部天然气水合物重点实验室, 青岛海洋地质研究所, 青岛 266071
基金项目:本文受国家重点研发计划项目(2016YFC0600408)、国家自然科学基金项目(41803032)、青岛海洋科学与技术国家实验室"鳌山人才"卓越科学家计划项目(2017ASTCP-OS07)、中国博士后科学基金(2019M652495)和青岛市博士后应用研究项目联合资助.
摘    要:锑属亲铜元素,易与硫结合。锑在地核(0. 14×10~(-6))、地幔(0. 006×10~(-6))和地壳(0. 02×10~(-6))中的丰度均很低,而在黑色页岩(5. 0×10~(-6))中明显富集。锑是一种典型的低温成矿元素。我国华南地区低温成矿域拥有世界60%的锑探明储量。研究结果显示锑的成矿主要经历两阶段富集过程:一是与风化和沉积作用有关的表生过程;二是地球内部热驱动过程。寒武纪时华南位于赤道附近,受冈瓦纳大陆的造山带的影响,是全球地表风化最强烈的地区之一。在新元古代氧化事件的驱动下,锑在表生风化过程中被氧化为更易迁移的水溶性的SbO_3~-。因埃迪卡拉生物群所产生的有机质,有利于萃取水体中的锑并沉淀在还原性沉积物(黑色页岩)中。华南中生代岩浆活动烘烤表层富锑的寒武纪黑色页岩,产生的成矿流体向上迁移,淋滤黑色页岩中的Sb或与黑色页岩变质脱水或熔融产生成矿流体混合;而后搬运至远离岩体的有利位置沉淀,最终形成大规模的华南锑矿带。

关 键 词:  锑的地球化学  寒武纪黑色页岩  华南锑矿
收稿时间:2019/5/10 0:00:00
修稿时间:2019/10/11 0:00:00

Geochemical characteristics of antimony and genesis of antimony deposits in South China
ZHANG TianYu,LI CongYing,SUN SaiJun and HAO XiLuo.Geochemical characteristics of antimony and genesis of antimony deposits in South China[J].Acta Petrologica Sinica,2020,36(1):44-54.
Authors:ZHANG TianYu  LI CongYing  SUN SaiJun and HAO XiLuo
Institution:Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266237, China;Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China,Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266237, China;Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China,Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266237, China;Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China and MNR Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Qingdao 266071, China
Abstract:Antimony is a chalcophile element, which is easily combined with sulfur. The abundances of antimony in the core (0.14×10-6), the mantle (0.006×10-6) and the crust (0.02×10-6) are all very low, while it is enriched in black shale (5.0×10-6). The solubility of antimony is controlled by temperature, salinity, pH value and oxygen fugacity, but not to pressure. Rutile and omphacite are the main carriers of antimony in high-pressure to ultrahigh-pressure metamorphic rocks. Antimony is also a typical low-temperature metallogenic element. The low-temperature mineralization domain in South China, possesses 60% of the world''s proven antimony reserves mostly formed in the Yanshanian Period. Our studies show that the mineralization of Sb mainly experienced two stages:One is the supergene process related to weathering and sedimentation, and the other is the hydrothermal process caused by magmatism. South China, located near the equator during the Cambrian, was affected by the Gondwana continental orogenic belt, and it is one of the most weathered areas in the world. The fertile source area is very important for the formation of antimony deposits in South China, whereas organic matter plays a positive role for the extraction and migration of antimony. As a result of Neoproterozoic Oxidation Event, antimony was oxidized to water-soluble SbO3- during supergene weathering. The organic matter, produced by the Ediacara biota is conducive to extracting antimony from water, and precipitating it in reduced sediments (black shale). The Mesozoic magmatic activity in South China baked the surface antimony-rich Cambrian black shale, and the ore-forming fluids produced by magma migrated upward, leaching Sb from black shales or mixing with other ore-forming fluids produced by metamorphic dehydration or melting of the black shale; and then it was transported to a favorable location far from the rock mass to deposit, eventually forming a large-scale antimony ore belt in South China.
Keywords:Antimony  Geochemistry of antimony  Cambrian black shale  Antimony deposits in South China
本文献已被 CNKI 等数据库收录!
点击此处可从《岩石学报》浏览原始摘要信息
点击此处可从《岩石学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号