首页 | 本学科首页   官方微博 | 高级检索  
     


Accuracy and precision of different sampling strategies and flux integration methods for runoff water: comparisons based on measurements of the electrical conductivity
Authors:Patrick Schleppi  Peter A. Waldner  Bruno Fritschi
Abstract:Because of their fast response to hydrological events, small catchments show strong quantitative and qualitative variations in their water runoff. Fluxes of solutes or suspended material can be estimated from water samples only if an appropriate sampling scheme is used. We used continuous in‐stream measurements of the electrical conductivity of the runoff in a small subalpine catchment (64 ha) in central Switzerland and in a very small (0·16 ha) subcatchment. Different sampling and flux integration methods were simulated for weekly water analyses. Fluxes calculated directly from grab samples are strongly biased towards high conductivities observed at low discharges. Several regressions and weighted averages have been proposed to correct for this bias. Their accuracy and precision are better, but none of these integration methods gives a consistently low bias and a low residual error. Different methods of peak sampling were also tested. Like regressions, they produce important residual errors and their bias is variable. This variability (both between methods and between catchments) does not allow one to tell a priori which sampling scheme and integration method would be more accurate. Only discharge‐proportional sampling methods were found to give essentially unbiased flux estimates. Programmed samplers with a fraction collector allow for a proportional pooling and are appropriate for short‐term studies. For long‐term monitoring or experiments, sampling at a frequency proportional to the discharge appears to be the best way to obtain accurate and precise flux estimates. Copyright © 2006 John Wiley & Sons, Ltd.
Keywords:water chemistry  runoff  sampling schemes  accuracy  catchment hydrology  electrical conductivity  solute fluxes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号