首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evidence from mantle xenoliths for relatively thin (<100 km) continental lithosphere below the Phanerozoic crust of southernmost South America
Authors:Charles R Stern  Rolf Kilian  Bettina Olker  Eric H Hauri  T Kurtis Kyser  
Institution:

a Department of Geological Sciences, University of Colorado, Boulder, CO 80309-0399, USA

b Geologisches Institut, Universität Freiburg, D-79104 Freiburg, Germany

c Mineralogisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany

d Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA

e Department of Geological Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6

Abstract:Garnet peridotite xenoliths in the Quaternary Pali-Aike alkali olivine basalts of southernmost South America are samples of the deeper portion of continental lithosphere formed by accretion along the western margin of Gondwanaland during the Phanerozoic. Core compositions of minerals in garnet peridotites indicate temperatures of 970 to 1160°C between 1.9 and 2.4 GPa, constraining a geothermal gradient which suggests a lithospheric thickness of approximately 100 km below this region. Previously, this lithosphere may have been heated and thinned to ≤80 km during the Jurassic break-up of Gondwanaland, when widespread mafic and silicic volcanism occurred in association with extension in southern South America. Subsequent cooling, by up to >175°C, and thickening, by about 20 km, of the lithosphere is reflected in low-temperature (<970°C) spinel peridotites by chemical zonation of pyroxenes involving a rimward decrease in Ca, and in moderate- and high-temperature (>970°C) peridotites by textural evidence for the transformation of spinel to garnet. A recent heating event, which probably occurred in conjunction with modal metasomatism related to the genesis of the Pali-Aike alkali olivine basalts, has again thinned the lithosphere to <100 km. Evidence for this heating is preserved in moderate- and high-temperature (>970°C) peridotites as chemical zonation of pyroxenes involving a rimward increase in Ca, and by kelyphitic rims around garnet. The majority of moderate- and high-temperature (>970°C) xenoliths are petrochemically similar to the asthenospheric source of mid-oceanic ridge basalts: fertile (>20% modal clinopyroxene and garnet), Fe-rich garnet lherzolite with major element composition similar to estimates of primitive mantle, but large-ion-lithophile and light-rare-earth element depletion relative to heavy-rare-earth elements, and with Sr, Nd, Pb, Os, and O isotopic compositions similar to MORB. In contrast, infertile, Mg-rich spinel harzburgite is predominant among low-temperature (<970°C) xenoliths. This implies a significant chemical gradient and increasing density with depth in the mantle section represented by the xenoliths, and the absence of a deep, low density, olivine-rich root below the southernmost South American crust such as has been inferred below Archean cratons. With respect to both temperature/rheology and chemistry/density, the subcontinental mantle lithosphere below southernmost South America is similar to that below oceanic crust. It is interpreted to have formed by tectonic capture, during the Paleozoic, of a segment of what had previously been oceanic lithosphere generated at a late Proterozoic mid-oceanic spreading ridge.
Keywords:Mantle  Lithosphere  Peridotite  Xenolith  South America
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号