首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Compounding Effects of Tropical Deforestation and Greenhouse Warming on Climate
Authors:H Zhang  A Henderson-Sellers  K McGuffie
Institution:(1) Bureau of Meteorology Research Centre, Melbourne, Australia;(2) Environment Division, Australian Nuclear Science and Technology Organisation, Sydney, Australia;(3) Department of Applied Physics, University of Technology, Sydney, Australia
Abstract:This study reports the first assessment of the compounding effects of land-use change and greenhouse gas warming effects on our understanding of projections of future climate. An AGCM simulation of the potential impacts of tropical deforestation and greenhouse warming on climate, employing a version of NCAR Community Climate Model (CCM1-Oz), is presented. The joint impacts of tropical deforestation and greenhouse warming are assessed by an experiment in which removal of tropical rainforests is imposed into a greenhouse-warmed climate. Results show that the joint climate changes over tropical rainforest regions comprise large reductions in surface evapotranspiration (by about –180 mm yr–1) andprecipitation (by about –312 mm yr–1) over the Amazon Basin, along with anincrease of surface temperature by +3.0 K. Over Southeast Asia, similar but weaker changes are found in this study. Precipitation is decreased by –172 mmyr–1, together with the surface warming of 2.1 K. Over tropical Africa, changes in regional climate is much weaker and with some different features, such as the increase of precipitation by 25 mm yr–1. Energy budgetanalyses demonstrates that the large increase of surface temperature in the joint experiment is not solely produced by the increase of CO2concentration, but is a joint effect of the reduction of surface evaporation (due to deforestation) and the increase of downward atmospheric longwave radiation (due to the doubling of CO2 concentration). Furthermore, impactsof tropical deforestation on the greenhouse-warmed climate are estimated by comparing a pair of tropical deforestation simulations. It is found that in CCM1-Oz, deforestation has very similar impacts on greenhouse-warmed regional climates as on current climates over tropical rainforest regions. The extra-tropical climatic response to tropical deforestation is identified in both sets of tropical deforestation experiments. Statistically significant responses are seen in the large-scale atmospheric circulation such as changes in the velocity potential and vertically integrated kinetic and potential energy fields. Wave propagation patterns are identified in the large-scale circulation anomalies, which provides a mechanism for interpreting the model responses in the extra-tropics. In addition, this study suggests that land-use change such as tropical deforestation may affect projections of future climate.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号