碳酸盐岩礁滩油气储层地震预测方法探讨 |
| |
引用本文: | 贺振华,贾义蓉,蒋炼,黄德济. 碳酸盐岩礁滩油气储层地震预测方法探讨[J]. 物探化探计算技术, 2011, 33(1): 1-5,117 |
| |
作者姓名: | 贺振华 贾义蓉 蒋炼 黄德济 |
| |
作者单位: | 1. 成都理工大学,油气藏地质及开发工程国家重点实验室,成都,610059;成都理工大学,信息工程学院,成都,610059 2. 成都理工大学,信息工程学院,成都,610059 |
| |
摘 要: | 储层结构和孔隙流体预测是目前碳酸盐岩礁滩油气储层地震预测的重点和难点。这里从流体敏感性参数的选择和基于储层结构模拟的孔隙度预测二方面。研究了碳酸盐岩礁滩油气储层的流体识别问题。其中,基于测井资料统计分析和/或岩石物理岩样测试的参数交会图的制作,是优选烃类敏感参数的基础。在单一敏感参数的基础上,构组复合型的流体识别因子,能获得更好的流体识别效果。储层孔隙度预测是这样实现的:首先,对Gassman流体替换方程通过引入近似关系βp-βs≈βp进行简化;然后引入Eshelby—Walsh储层结构参数以获得直接计算孔隙度的表达式;最后,根据弹性反演得到的纵波、横渡阻抗(或纵波、横波速度)等参数,计算得到孔隙度及孔隙流体预测剖面。经实际地震资料的流体预测结果显示,新方法比常规方法预测的精度高。
|
关 键 词: | 礁滩储层 流体预测 地震孔隙度反演 孔隙结构 |
Research on the methodology of carbonate reef-shoal reservoir description by 3D seismic data |
| |
Affiliation: | HE Zhen-hua1,2,JIA Yi-rong2,JIANG Lian2,et al.(1.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Chengdu University of Technology,Chengdu 610059,China;2.College of Information Engineering,Chengdu University of Technology,Chengdu 610059,China). |
| |
Abstract: | Predictions of reservoir pore-composition and pore-fluid on carbonate reef-shoal formation by using seismic data are very important and difficult.The problems of reservoir pore-composition and pore-fluid predictions can be solved partially by both optimal selection of hydrocarbon-sensitive parameters and an improved seismic porosity inversion.The hydrocarbon-sensitive parameter selection can be implemented through crossplot of elastic parameters and fluid factors which are constructed by compositing several reservoir parameters from well log data and/or petrophysics data.The calculations of improved seismic porosity inversion are divided in three steps:(1) simplification of Gassman-equation by βp-βs≈βp;(2) substituting Eshelby-Walsh pore-composition parameters into Gassman-equation;(3) implementing seismic porosity inversion using new equations above.Field data examples show that the improved porosity inversion is better than traditional ones. |
| |
Keywords: | reef-shoal reservoir fluid prediction seismic porosity inversion pore composition |
本文献已被 CNKI 维普 万方数据 等数据库收录! |
|