首页 | 本学科首页   官方微博 | 高级检索  
     


210Pb and 137Cs dating methods in lakes: A retrospective study
Authors:Gaboury Benoit  Tim F. Rozan
Affiliation:(1) Yale School of Forestry and Environmental Studies, 370 Prospect Street, New Haven, CT 06511, USA;(2) College of Marine Studies, University of Delaware, 700 Pilottown Road, Lewes, DE 19958, USA
Abstract:210Pb has been used for more than two decades to provide the geochronology of annually deposited sediments and to construct pollution histories. Evidence from some lakes suggests that this radionuclide may be adequately mobile to compromise dating reliability. This study provides one test of that possibility by comparing recent measurements of 210Pb and trace metals to ones carried out more than 20 yrs in the past. 137Cs dating is used to confirm sediment accumulation rates in the recent cores. In the three Connecticut, USA, lakes studied, sediment accumulation rates changed abruptly to higher values between 40-50 yrs ago (increasing by factors of 2.2, 2.9, and 3.0). In all three lakes, rates calculated from 210Pb distributions both above and below this horizon agreed, within measurement uncertainty, in recent and older cores. Furthermore, when the older data were corrected for 20 yrs of burial, the changes in slope in 210Pb distributions occurred at the same depth in each pair of cores. The depth of sharp peaks in concentrations of trace metals also matched. In general, this evidence supports the idea that sediments in these lakes have simply been buried, without significant diagenetic remobilization of 210Pb and trace metals . Nevertheless, some important differences were also observed. For two of the three lakes, there was a significant difference in average sediment accumulation rate during the past 33 yrs as calculated from 137Cs and 210Pb in the recent cores. Most potential causes for this difference can be ruled out, and it appears that one of the two nuclides is remobilized compared to the other. There were also significant differences in the total inventories of both 210Pb and trace metals (both up to 2 ×) between recent and older cores in some cases. This may be due to dissimilar sediment focusing, since it is not known for certain whether the new cores were collected at exactly the same sites as in the past.
Keywords:210Pb  137Cs  metals  mobility  geochronology  Connecticut
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号