首页 | 本学科首页   官方微博 | 高级检索  
     


Neogene volcanism and Holocene earthquakes in the Tanlu fault zone, eastern China
Authors:W. Huang  W. Gao  G. Ding
Affiliation:

aCenter for Earthquake Analysis and Prediction, State Seismological Bureau, Beijing, PR China

Abstract:In this paper, we study the relationship between Neogene volcanism and Holocene earthquakes in the Tanlu fault, eastern China. We find that fault segments through which Neogene and Quaternary magma have extruded do not show Holocene slip because they are covered by unfaulted basalts. In contrast, fault branches that are away from the Quaternary volcanic centers display Quaternary faulting and are responsible for earthquakes as recorded both historically and geomorphologically. Therefore, magma intrusion appears to modify fault activity in two different ways: (1) within the faults, the cooling magma serves as a cohesion or barrier, welding the faults so that they become stronger in resisting slip; (2) beneath the faults, the upwelling magma promotes slip of faults above the magma body, and hence generation of earthquakes. Physically, the first case results from contraction of the cooling magma, which causes a relative increase in fault-normal stress so that the fault failure resistance is enhanced. The second case results from the upward dynamic force and the heat brought in by the magma body, both of which cause the effective fault-normal stress to decrease so that the fault failure resistance is reduced. That could explain why earthquakes occur on faults bypassing the volcanic centers as typified in the Yishu fault zone and in the regions where heat flows are relatively high as shown in the Bohai Bay area.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号