首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enthalpies of formation at 970 K of compounds in the system MgO-Al2O3-SiO2 from high temperature solution calorimetry
Authors:TV Charlu  RC Newton  OJ Kleppa
Institution:Department of the Geophysical Sciences, The University of Chicago, 5734 South Ellis Ave., Chicago, IL 60637, U.S.A.
Abstract:The enthalpies of solution of petrologically important phases in the system MgO-Al2O3-SiO 2 were measured in a melt of composition 2PbO · B2O3 at 970 ± 2K. The substances investigated included synthetic and natural (meteoritic) enstatite (MgSiO3), synthetic aluminous enstatite (MgSiO30.9Al2O30.1), synthetic and natural cordierite (Mg2Al4Si5O18), synthetic and natural sapphirine (approx. 7MgO·9Al2O3 · 3SiO2), synthetic spinel (MgAl2O4), natural sillimanite (Al2SiO5), synthetic forsterite (Mg2SiO4), synthetic pyrope (Mg3Al2Si3O12), natural quartz (SiO2), synthetic periclase (MgO) and corundum (Al2O3). Improvement in standardization of the calorimeter solvent made possible greater precision in this study than obtainable in former work in this laboratory on some of the same substances.The enthalpies of formation of enstatite, synthetic cordierite, forsterite and spinel are in reasonable agreement with values previously determined by solution calorimetry. The enthalpy of formation of enstatite is about 0.7 kcal less negative than the value for clinoenstatite resulting from the HF calorimetry of Torgesen and Sahama (J. Amer. Chem. Soc.70. 2156–2160, 1948), and is in accord with predictions based on analysis of published pyroxene equilibrium work. Aluminous enstatite with 10 wt.% Al2O3 shows an enthalpy of solution markedly lower than pure MgSiO3: the measurements lead to an estimate of the enthalpy of formation at 970 K for MgAl2SiO6 (Mg-Tschermak) orthopyroxene of + 9.4 ± 1.5 kcal/mole from MgSiO3 and Al2O3.Comparison of the enthalpies of formation of synthetic cordierite and anhydrous natural low-iron cordierite shows that they are energetically quite similar and that the synthetic cordierite is not likely to have large amounts of (Al, Si) tetrahedral disorder. Comparison of the enthalpies of formation of synthetic sapphirine and natural low-iron sapphirine shows, on the other hand, that the former is not a good stability model for the latter. The lower enthalpy of formation of the high-temperature synthetic sample is undoubtedly a consequence of cation disordering.The enthalpy of formation of natural sillimanite is considerably less negative than given by the tables of Robie andWaldbaum (U.S. Geol. Surv. Bull.1259 1968).The measured enthalpy of formation of synthetic pyrope is consistent with that deduced from published equilibrium diagrams in conjunction with the present measured enthalpy of formation of aluminous enstatite. Calculation of the entropy of synthetic pyrope from the present data yields surprisingly high values and suggests that synthetic pyrope is not a good stability model for natural pyrope-rich garnets. Hence, considerable doubt exists about the direct quantitative application of experimental diagrams involving pyropic garnet to discussions of the garnet stability field in the Earth's outer regions.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号