首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Towards improved snow water equivalent retrieval algorithms for satellite passive microwave data over the mountainous basins of western USA
Authors:Naoki Mizukami  Sanja Perica
Institution:1. Department of Civil and Environmental Engineering, University of Utah, , Salt Lake City, UT, USA;2. Office of Hydrologic Development, National Oceanic and Atmospheric Administration, National Weather Service, , Silver Spring, MD, USA
Abstract:Space‐borne passive microwave snow water equivalent (SWE) retrieval algorithms are attractive for continuous SWE monitoring over large mountainous areas. The performance of three SWE retrieval algorithms, which were considered relevant for operational purposes, was examined for each month over the Colorado River Basin. In addition, statistical post‐processing was tested as a means of improving the SWE estimates from each algorithm. The evaluation started with the so‐called Chang equation, which was a pioneer algorithm and is still used in practice. Successive attempts were then made to improve the algorithm's performance through the calibration of the equation's coefficient and through the inclusion of brightness temperature data from various frequency channels. The Chang equation consistently underestimated SWE with average bias between 30 mm in November and more than 300 mm in April and root mean square error (RMSE) exceeding 500 mm at many locations in April. The statistical post‐processing effectively removed the bias and reduced the RMSE by half for all the months. When the Chang equation's coefficients were calibrated at each site, biases were reduced by approximately 85%, and RMSE was reduced by 40%–50%. Finally, the multiple channel equations produced unbiased SWE estimates with RMSEs 50%–60% of those from the Chang equation. However, the statistical post‐processing did not reduce RMSE for both calibrated algorithms. The last algorithm produced the most reliable estimates for at‐site analysis, but its skill deteriorated when analyses were performed over larger areal extents; therefore, it is only recommended for SWE monitoring over smaller areas. For larger areas, the calibrated Chang equation is desirable because it only requires interpolations of a calibrated coefficient, which was spatially coherent. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:snow water equivalant  passive microwave brightness temperature  SNOTEL  Mountain snowpack
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号