首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Molecular gas in distant galaxies from ALMA studies
Authors:Françoise Combes
Institution:1.Observatoire de Paris, LERMA, Collège de France, CNRS, PSL Univ.,Sorbonne University, UPMC,Paris,France
Abstract:ALMA is now fully operational, and has been observing in early science mode since 2011. The millimetric (mm) and sub-mm domain is ideal to tackle galaxies at high redshift, since the emission peak of the dust at 100 \(\upmu \)m is shifted in the ALMA bands (0.3–1 mm) for \(z=\) 2–9, and the CO lines, stronger at the high-J levels of the ladder, are found all over the 0.3–3 mm range. Pointed surveys and blind deep fields have been observed, and the wealth of data collected reveal a drop at high redshifts (\(z>6\)) of dusty massive objects, although surprisingly active and gas-rich objects have been unveiled through gravitational lensing. The window of the reionization epoch is now wide open, and ALMA has detected galaxies at \(z=8\)–9 mainly in continuum, CII] and OIII] lines. Galaxies have a gas fraction increasing steeply with redshift, as \((1+z)^2\), while their star formation efficiency increases also but more slightly, as \((1+z)^{0.6}\) to \((1+z)^1\). Individual object studies have revealed luminous quasars, with black hole masses much higher than expected, clumpy galaxies with resolved star formation rate compatible with the Kennicutt–Schmidt relation, extended cold and dense gas in a circumgalactic medium, corresponding to Lyman-\(\alpha \) blobs, and proto-clusters, traced by their brightest central galaxies.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号