Mineralogy and petrology of sample 67075 and the origin of lunar anorthosites |
| |
Authors: | I.S. McCallum F.P. Okamura S. Ghose |
| |
Affiliation: | Department of Geological Sciences, University of Washington, Seattle, Wash. USA |
| |
Abstract: | Plagioclase in cataclastic anorthosite 67075 occurs as angular matrix grains and as recrystallized clasts of micro-anorthosite. Olivines are Fe-rich and fall into two compositional groupings. Large grains of pyroxene show exceptionally well-developed exsolution lamellae analogous to those observed in pyroxenes from layered complexes. The low-Ca component in both pigeonites and augites shows varying degrees of inversion to orthopyroxene. The lattices of host and lamellae may deviate slightly (up to 2°) from the ideal orientation. Very slow cooling from magmatic temperatures is required to produce the coarse exsolution textures and inversion features. Augite macrocrystals are distinctly subcalcic indicating crystallization at temperatures around1100 ± 50°C while host-lamellae pairs and small grains in lithic clasts and matrix indicate reequilibration on a micron scale to temperatures less than 800°C. Pyroxene compositions tend to cluster into two groups both of which are among the most Fe-rich reported for highland pyroxenes. Ti and Al contents of pyroxenes are very low and Ti, Cr, and Mn follow well-established magmatic differentiation trends. The high Cr content may reflect low?O2 conditions and/or early crystallization of olivine and plagioclase.The87Sr/86Sr ratios in lunar anorthosites are the lowest reported for any lunar rock. It is likely that anorthosites formed as cumulates during the major differentiation episode which occurred prior to~4.3AE. Recrystallization features are common and39Ar/40Ar ages cluster around 4.0 AE. This may be the result of the intense bombardment prior to 4.0 AE which caused repeated cycles of in-situ fracturing and granulation followed by recrystallization. The low siderophile element content and the inferred slow cooling indicate a plutonic source region (10km) not frequently plumbed by impact events. The Fe-rich silicates indicate crystallization from a melt at an advanced stage of fractionation. However, the low REE abundances are not consistent with late-stage crystallization. Plagioclase apparently crystallized relatively early and was concentrated by flotation and/or convection currents while the mafic minerals crystallized from a fractionated trapped liquid. The chemical, isotopic, and mineralogical data place stringent constraints on the nature of genetically related rocks and the relationship of anorthosites to other members of the ANT suite does not appear to be one ofsimple fractionation. The data presented in this paper are consistent with the Taylor-Jake?model of lunar evolution. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|