首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Observations of precipitating convective systems at 92 and 183 GHz: Aircraft results
Authors:I M Hakkarinen  R F Adler
Institution:(1) Present address: General Sciences Corporation, 20707 Laurel, Maryland, USA;(2) Present address: Laboratory for Atmospheres, NASA/Goddard Space Flight Center, 20771 Greenbelt, Maryland, USA
Abstract:Summary High spatial resolution data from an airborne microwave imaging radiometer operating at 92 and 183 GHz (0.32 and 0.16 cm wavelengths) are compared with ground-based radar data for a series of observations of precipitating convective systems. An inverse relationship between microwave brightness temperature (T B ) and radar-derived rain rate (RR) is observed. Differences in the empirical curves between midlatitude and tropical cloud systems are related to the differing microphysical and dynamical environments.ColdT B features in the aircraft images are collocated with high reflectivity values in the radar data. Over a water back-ground, which has a low surface emissivity at these frequencies, small convection produces an increase inT B at 92 GHz due to emission by liquid water in the cloud. As the convection deepens and ice forms,T B at both frequencies decreases rapidly with increasing rain rate. The large decrease inT B with increasing storm intensity is due to scattering of upwelling radiation by precipitation-sized ice particles within the clouds. With high rain rates, there is little difference betweenT B observed over both land and water backgrounds.TheT B features in the aircraft imagery are qualitatively similar to radar echoes in plan position indicator (PPI) images. Areas of extremely coldT B (<150 K) coincide with high radar reflectivities. The highest correlations between microwave and radar features with regard to location, intensity, and shape occur more frequently with mid-to upperlevel echoes rather than low-level reflectivity features.With 12 Figures
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号