首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The effect of the Fernando de Noronha plume on the mantle lithosphere in north-eastern Brazil
Authors:Giorgio Rivalenti  Alberto Zanetti  Vicente AV Girardi  Maurizio Mazzucchelli  Colombo CG Tassinari  Gustavo W Bertotto
Institution:

aDipartimento di Scienze della Terra, Università di Modena e Reggio Emilia, P.le S. Eufemia 19, 41100 Modena, Italy

bInstituto de Geociências, Universidade de São Paulo, Rua do Lago 563, Cidade Universitaria 05508-900, São Paulo, Brazil

cDipartimento di Scienze della Terra, Università di Pavia and CNR, Istituto di Geoscienze e Georisorse, sezione di Pavia, Via Ferrata 1, 27100 Pavia, Italy

dCONICET and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de La Pampa, Uruguay 151, 6300 Santa Rosa, La Pampa, Argentina

Abstract:New xenolith occurrences in the Cenozoic alkali basalts of north-eastern Brazil have been studied in order to constrain the possible imprint on the continental mantle lithosphere of its passage over the Fernando de Noronha plume and the regional mantle processes. Texturally, the lherzolite and harzburgite xenoliths define three groups: group 1, porphyroclastic; group 2, protogranular; group 3, transitional between groups 1 and 2. Equilibrium temperatures are highest for group 1 and lowest for group 2. Clinopyroxenes from group 1 peridotites have Primitive Mantle (PM)-normalised REE patterns varying from L-MREE-enriched convex-upward, typical of phases in equilibrium with alkaline melts, to LREE-enriched, spoon-shaped, to LREE-enriched, steadily fractionated in a wehrlite. Group 2 clinopyroxenes show patterns slightly depleted in LREE to nearly flat. The M-HREE are at 3–5 ×PM concentration level, as typical in fertile lithospheric lherzolites. Most of group 3 clinopyroxenes show LREE-depleted patterns similar to the group 2 ones, but in two samples the clinopyroxenes are characterised by LREE-enriched, spoon-shaped profiles. Sr and Nd isotopes of the group 1 clinopyroxenes form an array between DM and EMI-like components, both of them are also present in the host basalts. Melts estimated to be in equilibrium with the group 1 clinopyroxenes having L-MREE-enriched, convex-upward patterns are similar to the Cenozoic alkaline magmas. The groups 2 and 3 clinopyroxenes define two distinct compositional fields at higher 143Nd/144Nd values, correlated with their LREE composition. The isotopes of the groups 2 and 3 LREE-depleted clinopyroxenes form an array from DM towards the isotopic composition of Mesozoic tholeiitic basalts from north-eastern Brazil. Melts in equilibrium with these clinopyroxenes are similar to these basalts, thus suggesting that such xenoliths record geochemical imprint from older melt-related processes.

The LREE-enriched spoon-shaped group 3 clinopyroxenes are characterised by the highest 143Nd/144Nd values at any given 87Sr/86Sr composition. These results are interpreted in terms of a lithospheric mantle section which underwent thermo-chemical and mechanical erosion by infiltration of asthenospheric alkali basalts having EMI-like isotope characteristics during Cenozoic time. At that time, the lithospheric mantle consisted of fertile lherzolites and harzburgites recording the geochemical imprint of Mesozoic mantle processes. The onset of the interaction between lithospheric peridotites and alkaline melts was characterised by the porous flow percolation of small melt volumes that induced chromatographic enrichments in highly incompatible elements and the isotope signature of the spoon-shaped, group 3 clinopyroxenes. Group 1 peridotites represent the base of the lithospheric column eroded by the ascending alkaline melts, whereas the group 2 documents the shallower lithospheric section, with group 3 being the transition. The similarity of processes and isotope components in the protogranular xenoliths from Fernando de Noronha area and north-eastern Brazil supports the hypothesis that the lithosphere beneath Fernando de Noronha is a detached portion of the continental one. Furthermore, the similarity in terms of textural and geochemical features documented by the mantle samples coming from the two different regions seems to confirm the interference of the two regions with the same plume.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号