Abstract: | In this paper the authors perform an extensive sensitivity analysis of the Indian summer monsoon rainfall to changes in parameters and boundary conditions which are influenced by human activities. For this study, the authors use a box model of the Indian monsoon which reproduces key features of the observed monsoon dynamics such as the annual course of precipitation and the transitions between winter and summer regimes. Because of its transparency and computational efficiency, this model is highly suitable for exploring the effects of anthropogenic perturbations such as emissions of greenhouse gases and sulfur dioxide, and land cover changes, on the Indian monsoon. Results of a systematic sensitivity analysis indicate that changes in those parameters which are related to emissions of greenhouse gases lead to an increase in Indian summer rainfall. In contrast, all parameters related to higher atmospheric aerosol concentrations lead to a decrease in Indian rainfall. Similarly, changes in parameters which can be related to forest conversion or desertification, act to decrease the summer precipitation. The results indicate that the sign of precipitation changes over India will be dependent on the direction and relative magnitude of diffierent human perturbations. |