首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Petrologic consequences of rift propagation on oceanic spreading ridges
Authors:John M Sinton  Douglas S Wilson  David M Christie  Richard N Hey  John R Delaney
Institution:1. Hawaii Institute of Geophysics, University of Hawaii, Honolulu, HA 96822U.S.A.;2. Department of Oceanography, University of Washington, Seattle, WA 99195U.S.A.
Abstract:The production of anomalously differentiated lava compositions at several mid-ocean spreading centers can be attributed to magmatic processes associated with propagating rifts. The degree of differentiation attained by magmas beneath oceanic spreading ridges depends mainly on the balance between cooling rate and the supply rate of new magma to shallow chambers. Low supply rates and moderate cooling rates allow advanced degrees of closed-system fractionation to occur. High supply rates result in open systems in which magma compositions are buffered by frequent replenishment with new hot magma. Propagating rift tips are a special class of ridge-transform intersection in which the balance between cooling and supply rates is conducive to the development of advanced degrees of differentiation over an expanded length of ridge. This balance is affected by the spreading rate, the propagation rate of the rift, the length of the bounding transform and proximity to hotspots. Maximum compositional variability and maximum degree of differentiation occur within 50 km of propagating rift tips and subsequently diminish with increasing distance. Rifts that propagate through plates in directions approximating their absolute motion relative to the lower mantle are characterized by the presence of anomalously differentiated lavas over longer ridge segments than are rifts that propagate against their absolute motion. Geochemical anomalies may persist, though changing in degree and extent, for several million years on ridge segments that stop propagating. The concept of “magnetic telechemistry” is generally supported by our study, but in the vicinity of hotspots, magnetic anomaly amplitude may be controlled more by bathymetric and/or thickened magnetic layer effects than by geochemistry.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号