Cr spinel and chromite as petrogenetic indicators in ordinary chondrites: Equilibration temperatures of petrologic types 3.7 to 6 |
| |
Authors: | Frank Wlotzka |
| |
Abstract: | Abstract— Many Equilibrated Ordinary Chondrites Contain (Besides Chromites Of Constant Composition) Cr Spinel With A Large Spread In Cr/(Cr + Al) Ratios. They Occur Mainly As Large Grains In Chondrules Rich In Mesostasis, Preventing Complete Equilibration In Cr/Al But Not In Fe/Mg. This Partially Equilibrated Cr Spinel Turned Out To Be Particularly Useful For The Selection Of An Appropriate Olivine/Spinel Thermometer And For The Determination Of Equilibration Temperatures. The Main Results Are: - 1) The H3.7 To 3.8 And The L3.7 To 3.8 Chondrites Analyzed Show Temperatures Of 625 To 680 °C;
- 2) Equilibrated Chondrites Show A Range Of Olivine/Cr‐Spinel Temperatures Between 700 And 820 °C, And The Same Average Temperatures For Type 4 To 6 (Number Of Analyzed Meteorites In Brackets): H4 (9) 766 °C, H5 (7) 774 °C, H6 (3) 775 °C, L4 (5) 752 °C, L5 (4) 754 °C, L6 (1) 754 °C. These Temperatures Are Interpreted As Equilibration Temperatures. One Indication Is That The Measured Isotherms Are Straight Lines Down To Low Cr/(Cr + Al) Ratios, Which Have A Higher Fe/Mg Interdiffusion Coefficient Than Grains With High Ratios. And There Is No Correlation Of Measured Temperature With Grain Size Of Cr Spinel.
- 3) Chromites Sensu Stricto Show Temperatures About 50 To 100 °C Lower Than Cr Spinel, And A Correlation With Grain Size. This Is A Closure Temperature Established During Cooling And In Situ Crystallization.
These Results Can Best Be Interpreted By A “Rubble Pile” Model Of Parent Body Evolution. This Model Cannot Explain, However, The Absence Of Type 4 To 6 Chondrites With Temperatures As Low As For Type 3.7 To 3.8. |
| |
Keywords: | |
|
|