首页 | 本学科首页   官方微博 | 高级检索  
     

吉林西部盐碱地数字图像植被覆盖度的自动提取
引用本文:丁艳玲,赵凯,李晓峰,郑兴明. 吉林西部盐碱地数字图像植被覆盖度的自动提取[J]. 地球信息科学学报, 2013, 0(4): 618-624
作者姓名:丁艳玲  赵凯  李晓峰  郑兴明
作者单位:1. 中国科学院东北地理与农业生态研究所,长春 130012; 中国科学院大学,北京 100049
2. 中国科学院东北地理与农业生态研究所,长春 130012; 长春净月潭遥感实验站,长春 130012
基金项目:国家自然科学基金项目“东北地区季节性积雪层中粒径的谱分布特征与微波(辐射、散射)特性研究”(41001201);国家高技术研究发展计划“(863”计划“)遥感产品真实性检验关键技术及其试验验证”(2012AA12A305-5-2)
摘    要:植被覆盖度是生态环境变化的重要指标,也是遥感反演的关键参数。盐碱地植被覆盖度的准确测量对研究地表植被蒸腾、土壤水分蒸发及土壤退化、盐碱化等具有重要意义。过绿指数(Excess Green index,ExG)对绿色植被比较敏感,能突显植被信息,去除土壤、阴影的干扰。通过对吉林西部盐碱地玉米、高粱、绿豆、杂草、土壤数字图像特征分析,利用改进过绿指数(Modified Excess Green index,MExG)算法计算植被和土壤的MExG值;并确定区分植被和土壤的MExG阈值为40,进而计算植被覆盖度。本文采用监督分类的最大似然法对比验证MExG自动提取结果,并对两种方法计算的玉米、高粱、绿豆和杂草的覆盖度,分别进行目视判读和t检验。研究表明,MExG自动提取方法具有客观性强,处理时间短,分类精度高等优点,是计算不同植被类型覆盖度的有效方法。

关 键 词:植被覆盖度  改进过绿指数  MExG自动提取  盐碱地

An Automatic Extraction Approach to Fractional Vegetation Cover of Saline Land with Digital Images
DING Yanling , ZHAO Kai , LI Xiaofeng , ZHENG Xingming. An Automatic Extraction Approach to Fractional Vegetation Cover of Saline Land with Digital Images[J]. Geo-information Science, 2013, 0(4): 618-624
Authors:DING Yanling    ZHAO Kai    LI Xiaofeng    ZHENG Xingming
Affiliation:1.Northeast Institute of Geography and Agricultural Ecology,CAS,Changchun 130012,China;2.University of Chinese Academy of Sciences,Beijing 100049,China;3.Changchun Jingyuetan Remote Sensing Test Site of Chinese Academy of Sciences,Changchun 130012,China)
Abstract:Fractional vegetation cover is an important variable in ecological environment and a key parameter in remote sensing estimation,which is needed in the modeling of the land-atmosphere exchanges of momentum,energy,water,and trace gases.Determination of fractional vegetation cover exactly is necessary for studies on plant transpiration,ground surface evaporation,soil degradation and salinization.Excess green,highlighting vegetation and inhibiting the interference of soil and shadow,was used as a contrast enhancement for identifying plants from soil regions.This study uses modified excess green index to extract fractional vegetation cover by analyzing RGB color features of corn,sorghum,mung beans and weeds growing in saline land in western Jilin Province.The digital images are geometrically corrected in order to eliminate distortion.The automatic extraction approach using modified excess green indexes which is about 40 for vegetation growing on the saline land of western Jilin Province accurately distinguishes vegetation from soil,derives plant and soil binary images,then calculates fractional covers of the four vegetation types.This paper chooses maximum likelihood method to contrast the results of MExG automatic classification.The covers of corn,sorghum,mung beans and weeds calculated by these two methods were compared by visual interpretation and t-test.The visual interpretation shows a very high probability.The t-tests indicate that the means of the four vegetation types extracted by maximum likelihood and MExG automatic classification show a high consistency.In addition,the true values of corn,sorghum,mung bean are obtained by digitizing these images using ArcGIS software to validate MExG approach.The accuracy of MExG method can reach 99%.The results show that the MExG automatic approach which achieves good classification results and is less labor and time intensive than maximum likelihood,can be a viable ground-based method to validate fractional cover products generated by remote sensing.
Keywords:fractional vegetation cover  modified excess green index  MExG automatic extraction  saline land
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号