首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Subglacial abrasion rates at Goldbergkees,Hohe Tauern,Austria, determined from cosmogenic 10Be and 36Cl concentrations
Authors:Christian Wirsig  Susan Ivy‐Ochs  Jürgen M Reitner  Marcus Christl  Christof Vockenhuber  Mathias Bichler  Martin Reindl
Institution:1. Laboratory of Ion Beam Physics, Zurich, Switzerland;2. Sedimentology, Geological Survey of Austria, Vienna, Austria;3. Department of Environmental Geosciences, University of Vienna, Vienna, Austria
Abstract:We report concentrations of cosmogenic 10Be and 36Cl used to determine erosion depths in the recently deglaciated bedrock at Goldbergkees in the Eastern Alps. The glacier covered the sampling sites during the Little Ice Age (LIA) until c. 1940. The youngest ages calculated from these concentrations match the known exposure time after the post‐LIA exposure of <100 years. The apparent age (no cover, no erosion) of most samples, however, is significantly older. We show that the measured nuclide concentrations represent subglacial erosion depths, rather than exposure times. In particular, erosion depths calculated using 10Be and 36Cl concentrations of individual samples match well, whereas apparent 36Cl ages are consistently older than 10Be ages. The bedrock at the ‘youngest’ surfaces was deeply eroded (≥ 297 cm) by the Goldbergkees during the late Holocene. In contrast, bedrock at the margin of the LIA ice extent was eroded ≤35 cm. These values convert to subglacial erosion rates on the order of 0.1 mm/a to >5 mm/a. While modeled erosion rates depend on the duration of glacial cover and erosion intrinsic to the different exposure scenarios used for calculation (700–3300 years), modeled total erosion depths are insensitive (5–20% change). Analysis of erosion depths on the transverse valley profile shows a general trend of greatest erosion part way up the valley side and less erosion under thin ice at the lateral margin. A second profile along the valley axis indicates depth of erosion is greatest where the ice abuts the foot of the investigated bedrock riegel and at its lee side just beyond the crest. Copyright © 2016 John Wiley & Sons, Ltd.
Keywords:glacial erosion  cirque glacier  Eastern Alps  Holocene
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号