首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sources and fluid regime of quartz-carbonate veins at the Sukhoi Log gold deposit,Baikal-Patom Highland
Authors:E O Dubinina  A V Chugaev  T A Ikonnikova  A S Avdeenko  A I Yakushev
Institution:1. Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences, Staromonetnyi per. 35, Moscow, 109017, Russia
Abstract:Complex (δ18O, δ13C, 87Sr/86Sr, 143Nd/144Nd, and REE composition) data were obtained on quartz-carbonate veins in metasedimentary rocks to elucidate the material sources and to evaluate fluid regime during low-sulfide gold-quartz ore mineralization at the Sukhoi Log deposit. In order to use an oxygen isotopic thermometry for quartz veins, we calibrated empirical dependence of fractionation factors between vein quartz and altered wall rocks. The temperature range of quartz equilibration with wall rocks was evaluated at 380–190°C. Independent temperatures obtained using this thermometer indicate that the vein ankerite can be both earlier and later than vein quartz. The isotopic systematics (δ13C and δ18O) of ankerite in the quartz-carbonate veins, carbonates in the ore-hosting shales of the Khomolkho and Imnyakh formations both within and outside mineralized zones at the deposit indicate that the ore-hosting rocks and veins in the mineralized zone contain incoming carbonate, which was most probably borrowed from the carbonate rocks of the Imnyakh Formation. REE composition of vein ankerite shows that these elements were transported by fluid as carbonate complexes. The behavior of the Eu/Eu* and (La/Yb)n ratios and Mn of the vein ankerite suggest that during carbonate crystallization the system was closed with respect to fluid. Sr-Nd isotope systematics indicates that the isotopic parameters of the vein ankerite were formed with the participation of metasedimentary host rocks of both the Imnyakh and Khomolkho formations, which are contrastingly different in Nd isotopic composition. A fluid/rock ratio during metasomatic processes in the wall rocks was calculated for two scenarios of their thermal history: with a continuously operating heat source beneath the Sukhoi Log structure and with a linear cooling of the structure. The effective integral W/R ratios calculated lie within the range of 0.046–0.226 and suggest that the veins were produced with the metamorphic fluid. Low W/R ratios are inconsistent with the mechanism of vein quartz crystallization due to fluid oversaturation with respect to SiO2 at decreasing temperature. We believe that the main mechanism responsible for the origin of these veins was variations of fluid oversaturation due to pressure variations (pressure solution mechanism). This hypothesis is consistent with the reported isotopic-geochemical characteristics of the wall rocks at the Sukhoi Log deposit.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号