首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geomagnetic signatures of sudden ionospheric disturbances during extreme solar radiation events
Institution:1. Institute of Space Sciences, National Central University, Chung-Li, Taiwan;2. Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russian Federation;1. University of Rennes 1, Rennes, France;2. Institute of Atmospheric Physics of ASCR, Prague, Czech Republic;3. Instituto Nazionale di Geofisica e Vulcanologia, Rome, Italy;4. National Central University, Jungli City, Taiwan;1. Department of Physics, M L S University, Udaipur, India;2. New Resident Doctor Hostel, GB Pant Hospital, New Delhi 110002, India;1. Entoto Observatory and Research Center, Addis Ababa, Ethiopia;2. Washera Geospace and Radar Science Laboratory, Physics Department, Bahir Dar University, Bahir Dar, Ethiopia;1. Space Research Institute RAS, Moscow, Russia;2. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, 119991, Russia;3. Physics Department, Universidad de Santiago de Chile (USACH), Chile
Abstract:We performed a comparative study of geomagnetic variations, which are associated with sudden ionospheric disturbances (SIDs) caused by great X-class solar flares on July 14, 2000 (Bastille flare) and on October 28, 2003 (Halloween flare). Intense fluxes of solar X-rays and EUV radiation as well as solar energetic particles (SEP) were considered as sources of abundant ionization of the ionosphere and upper atmosphere. Flare-initiated SIDs are revealed as transient geomagnetic variations, which are generated by enhanced electric currents flowing mainly in the bottom-side ionosphere. Those so-called solar flare effects (SFEs) were studied by using of geomagnetic data from INTERMAGNET worldwide network of ground-based magnetometers. In subsolar region the SFE is mainly controlled by the flare X-rays and/or EUV radiation. We found that in the Halloween flare the contribution of X-rays was comparable with the EUV, but in the Bastille flare the EUV flux was dominant. The ionization at high latitudes is generated by the SEP, which energy flux is comparable and even exceeds the solar electromagnetic radiation in that region. It was shown that in the Halloween event the pattern of SFE is formed by a two-vortex current system, which is similar to the quiet day Sq current system. However, during the Bastille flare, the pattern of induced currents is quite different: the northern vortex shifts westward and southern vortex shifts eastward such that the electroject is substantially tilted relative to the geomagnetic equator. From numerical estimations we found that at middle latitudes the SEP-initiated geomagnetic effect becomes comparable with the effects of solar electromagnetic radiation. It was also shown that the SEP contribute to the SFE in the nightside hemisphere. The revealed features of the SEP impact to the ionosphere were found in a good agreement with the theory of energetic particle penetration to the bottom-side magnetosphere.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号