首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Efficient hybrid breaching‐filling sink removal methods for flow path enforcement in digital elevation models
Authors:John B Lindsay
Institution:Department of Geography, The University of Guelph, Guelph, Canada
Abstract:Digital elevation models (DEMs) that are used in hydrological applications must be processed to remove sinks, mainly topographic depressions. Flow enforcement techniques include filling methods, which raise elevations within depressions, breaching, which carves channels through blockages, and hybrid methods. Despite previous research demonstrating the large impact to DEMs and subsequent analyses of depression filling, it is common practice apply this technique to flow enforcement. This is partly because of the greater efficiency of depression filling tools compared to breaching counterparts, which often limits breaching to applications of small‐ to moderate‐sized DEMs. A new hybrid flow enforcement algorithm is presented in this study. The method can be run in complete breaching, selective breaching (either breached or filled), or constrained breaching (partial breaching) modes, allowing for greater flexibility in how practitioners enforce continuous flow paths. Algorithm performance was tested with DEMs of varying topography, spatial extents, and resolution. The sites included three moderate sized DEMs (52 000 000 to 190 000 000 cells) and three massive DEMs of the Iberian Peninsula, and the Amazon and Nile River basins, the largest containing nearly one billion cells. In complete breaching mode, the new algorithm required 87% of the time needed by a filling method to process the test DEMs, while the selective breaching and constrained breaching modes, operating with maximum breach depth constraints, increased run times by 8% and 27% respectively. Therefore, the new algorithm offers comparable performance to filling and the ability to process massive topographic data sets, while giving practitioners greater flexibility and lowering DEM impact. Copyright © 2015 John Wiley & Sons, Ltd.
Keywords:topographic depression  digital elevation model  surface flow‐path modelling  flow enforcement  sink removal
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号