摘 要: | 水土保持生产建设项目扰动图斑解译工作多以人工目视解译方法实现,在实际工作中,存在效率低、成本高、主观性强等问题。本文提出了“智能提取模型+遥感监管协作平台”的生产建设项目扰动图斑人机协同智能提取框架,通过本底数据要素标注、数据增强等手段构建变化检测数据集,采用改进的U-Net++模型开展生产建设项目扰动图斑智能提取试验。结果表明,模型平均准确率为79.59%,面积召回率为80.90%。针对检测模型容易误提取伪变化和云雾遮挡区域,以及存在图斑破碎、轮廓不规整等问题,在自动提取成果的基础上构建了分布式并行协同解译平台,对扰动图斑进行增、删、补、检,并将最终结果作为新样本反馈给模型,进一步提升模型性能,形成样本与模型间的良性循环,提高了实际工作效率。
|