首页 | 本学科首页   官方微博 | 高级检索  
     检索      


OSL dating of the AD 869 Jogan tsunami deposit,northeastern Japan
Institution:1. Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8567, Japan;2. Japan Society for the Promotion of Science, Japan;1. Laboratoire de Géographie Physique, Environnements Quaternaires et Actuels, (LGP), UMR CNRS 8591, Universités Paris I & XII, 1 place Aristide Briand, 92195 Meudon cedex, France;2. Laboratoire de Géologie de Lyon (LGL–TPE), UMR CNRS 5276, Université Claude Bernard Lyon 1, 2 rue Raphaël Dubois, 69622 Villeurbanne Cedex, France;3. Laboratoire des Sciences du Climat et de l''Environnement, UMR CEA-CNRS-UVSQ 8212, Domaine du CNRS, 91198 Gif-sur-Yvette cedex, France;4. Laboratoire de Météorologie Dynamique, UMR CNRS 6539, PSL Research University, and CERES-ERTI, 24 rue Lhomond, 75231 Paris, France;5. Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA;1. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;2. Department of Earth Sciences, University of Hong Kong, Hong Kong, China;3. Centre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, NSW 2522, Australia;4. Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100049, China;1. MOE Laboratory for Earth Surface Processes, Department of Geography, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China;2. Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China;1. Laboratoire de Géographie Physique, Environnements Quaternaires et Actuels, (LGP), UMR 8591 CNRS-Université Paris 1-UPEC, 1 place Aristide Briand, 92195 Meudon Cedex, France;2. Laboratoire de Géologie de Lyon (LGL–TPE), UMR CNRS 5276, Université Claude Bernard Lyon 1, 2 Rue Raphaël Dubois, 69622 Villeurbanne Cedex, France;3. Laboratoire des Sciences du Climat et de l’Environnement, UMR CEA-CNRS-UVSQ 8212, Université Paris Saclay, 91198 Gif-sur-Yvette Cedex, France;4. Laboratoire de Météorologie Dynamique, UMR CNRS 6539, PSL Research University, CERES-ERTI, 24 Rue Lhomond, 75231 Paris, France;5. Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA;6. Research Group for Terrestrial Palaeoclimates, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany;1. Institut des sciences de la mer de Rimouski (ISMER), Canada Research Chair in Marine Geology & GEOTOP, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski QC G5L 3A1, Canada;2. Nordic Laboratory for Luminescence Dating, Department of Geoscience, Aarhus University, Risø Campus, DK-4000 Roskilde, Denmark;3. Centre for Nuclear Technologies, Technical University of Denmark, Risø Campus, DK-4000 Roskilde, Denmark;4. Département de biologie, chimie et géographie, Research Chair in Coastal Geoscience & Centre d’études nordiques, Université du Québec à Rimouski, 300 allée des Ursulines, Rimouski QC G5L 3A1, Canada;1. Institute of Hydrogeology and Environmental Geology, CAGS, Shijiazhuang 050061, China;2. Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
Abstract:Sediments deposited by the AD 869 Jogan tsunami offer an opportunity to test the reliability of optically stimulated luminescence (OSL) dating of relatively old historical tsunami deposits. We collected a geoslicer sample from sand deposited on the Sendai Plain, northeastern Japan, by the Jogan tsunami and applied quartz OSL dating to it. We then compared the OSL ages with the known age of the tsunami event. In ascending order, the sedimentary sequence in the geoslicer sample consists of the beach–dune sand, lower peat, Jogan tsunami deposit, upper peat, pre-2011 paddy soil, and the 2011 tsunami deposit. To obtain equivalent dose (De,bulk), a standard single-aliquot renegerative-dose (SAR) protocol was applied to large aliquots of the 180–250 μm fraction of two samples from the beach–dune sand, and four samples from differing levels of the Jogan tsunami deposit. The OSL decay curves were dominated by the medium component; thus, for two samples from the Jogan deposit the fast-component OSL signal was isolated and used to determine the equivalent dose (De,fast). Using De,bulk, OSL ages of the tsunami deposit were underestimated by ~40%, and even the beach–dune sand was dated younger than AD 869. In contrast, De,fast provided a robust age estimate with only slight underestimation. A pulse annealing test showed that the bulk and medium-component OSL signals were thermally unstable. The medium component in the natural OSL was clearly truncated in comparison to the regenerated OSL; the medium component is thus considered to be the main cause of the underestimated ages. Similar effects of a dominant medium-component OSL have been reported in tectonically active regions, which are also prone to tsunamis. The effect of this dominance should be carefully considered in quartz OSL dating of tsunami deposits.
Keywords:AD 869 Jogan tsunami  Fast-component OSL  OSL dating  Sendai plain  Tsunami deposits
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号