首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Salting-out of methane in single-salt solutions at 25°C and below 800 psia
Authors:Ronald K Stoessell  Patricia A Byrne
Institution:Coastal Studies Institute, Louisiana State University Baton Rouge, LA 70803 U.S.A.
Abstract:Aqueous solubilities of methane at 25°C have been determined in single-salt solutions equilibrated with a CH4 gas phase at 350, 550, and 750 psia. Measurements were made over a range of ionic strengths in NaCl, KCl, CaCl2, MgCl2, Na2SO4, K2SO4, MgSO4, Na2CO3, K2CO3, NaHCO3, and KHCO3 aqueous solutions.At 25°C and constant pressure and methane fugacity, methane solubilities were largely controlled by the stoichiometric ionic strength, I, and the cation of the salt. Except for an increased salting-out due to HCO3?, the anion effect was relatively insignificant. Different but consistent solubility trends were followed in monovalent and divalent cation salt solutions as a function of I. Solubilities increased in salt solutions having a common anion in the following cation sequence: Na+ < K+ ? Ca2+ < Mg2+.The molal salting coefficient, km, for each salt was constant under the experimental conditions of the study, km is defined by logγch4I where γch4, the molal activity coefficient, is the methane solubility ratio (mH2Omsalt solution) measured at constant temperature, pressure, and CH4 fugacity. Single-salt km values are as follows: 0.121, NaCl (4m); 0.121, Na2SO4 (1m); 0.118, Na2CO3 (1.5m); 0.146, NaHCO3 (0.5m); 0.101, KCl (4m); 0.108, K2SO4 (0.5m); 0.111, K2CO3 (2m); 0.145, KHCO3 (0.5m); 0.071, CaCl2 (2m); 0.063, MgCl2 (2m); and 0.066, MgSO4 (1.5m) where the molalities in parentheses refer to the maximum salt concentrations used in this study.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号