首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the siting of noble gases in E-chondrites
Authors:Jane Crabb  Edward Anders
Institution:Enrico Fermi Institute and Department of Chemistry, University of Chicago, Chicago, IL 60637 USA
Abstract:We have investigated the siting of noble gases in 6 E-chondrites, by analyzing fractions separated by density, grain size, and chemical resistance from Qingzhen (E3), Indarch (E4), Abee and Saint Sauveur (E4-5) and Yilmia and North West Forrest (E6).The new “subsolar” (i.e. Ar-rich) component in E6's is concentrated in the main, ensatite-rich fraction of the meteorites, with density 3.06–3.3 g/cm3. It is unaffected by HCl and HNO3 treatments of such fractions and remains in unchanged concentration when the samples are partially dissolved by HF. These properties suggest that the subsolar component is located in enstatite, or less likely, in a phase closely associated with it. E4-5's have at least half of their subsolar gases in HCl- and HNO3-resistant sites (enstatite?), but fail to show the increasing gas concentration with decreasing grain size that is characteristic of most other primordial gas carriers. This may mean that the subsolar gases originally were in some other phase, but were then transferred to enstatite by metamorphism.Most of the 129Xer of E6's is concentrated in the same fractions as the subsolar gases, again suggesting enstatite or an associated phase as the host. Only a few percent of the 129Xer is contained in fractions enriched in other major and minor minerals. In E4's, on the other hand, 129Xer is enhanced in finegrained, low density fractions and is also partly associated with chondrules. Perhaps 129I was originally contained in fine-grained matrix, but was transferred to enstatite during metamorphism.A carbon-rich fraction of Indarch (E4) is enhanced in Ne-A, CCF-Xe, and L-Xe. Interestingly, both the isotopic composition of Xe and the Ne/CCF-Xe ratios resemble those of C-chondrites, yet these two meteorite classes probably formed rather far apart. Thus, if these components were mixed at a late stage, it must have been in fairly constant ratio over a large scale. Alternatively, they may have been mixed at an earlier stage, into a common carrier that was spread through a significant portion of the solar nebula.The primordial gases of Qingzhen (E3) resemble those of Indarch: they are present in moderate amounts (20Nep = 1.2 × 10?8 cc/g, 132Xe = 10 × 10?10 cc/g), with little or no contribution from the subsolar component. Thus Qingzhen reinforces our earlier finding that E-chondrites show no regular increase in noble gas content with decreasing petrologic type. One notable feature of Qingzhen is its very low 3He21Ne ratio of 1.07, which indicates that 3He has been lost by solar heating. Solar heating may also account for its low, discordant gas retention ages (U,Th-He age = 1.1 AE, KAr age = 3.2AE).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号