首页 | 本学科首页   官方微博 | 高级检索  
     

警用空间大数据区位标识方法及其应用
引用本文:胡晓光,高树辉,童晓冲,程承旗,蔡能斌. 警用空间大数据区位标识方法及其应用[J]. 测绘学报, 2016, 45(Z1): 121-126. DOI: 10.11947/j.AGCS.2016.F015
作者姓名:胡晓光  高树辉  童晓冲  程承旗  蔡能斌
作者单位:1. 中国人民公安大学刑事科学技术学院, 北京 100038;2. 信息工程大学地理空间信息学院, 河南 郑州 450001;3. 北京大学工学院, 北京 100871;4. 上海市现场物证重点实验室, 200083
基金项目:2016年中国人民公安大学刑事科学技术学院学科建设项目,2016上海市刑事科学技术研究院横向项目(2016XCWZK10),中国人民公安大学中央高校基本科研业务费项目(2016JKF01315)2016 Discipline Construction Project of Institute of Forensic Science;PPSUC,2016 Shanghai Institute of Criminal Science and Technology Project(2016XCWZK10),The Fundamental Research Funds for the Central Universities
摘    要:警用空间大数据为警务工作的开展提供了丰富的决策依据,但也带来了一些挑战,如大数据整合复杂、多尺度信息关联困难、区位标识不唯一等,不利于警务改革的深入发展。本文提出了基于区域的位置标识方法来解决存在的问题,方法基于剖分网格设计了警用空间大数据的区位编码方法,并以户籍的区位标识为例进行说明,最后对其应用进行了展望,从而为警用空间大数据的有效组织和高效应用等提供了一种新的解决思路。

关 键 词:警用空间大数据  区位标识  区位编码  剖分网格  
收稿时间:2016-08-20
修稿时间:2016-10-20

Police Spatial Big Data Location Code and Its Application Prospect
HU Xiaoguang,GAO Shuhui,TONG Xiaochong,CHENG Chengqi,CAI Nengbin. Police Spatial Big Data Location Code and Its Application Prospect[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(Z1): 121-126. DOI: 10.11947/j.AGCS.2016.F015
Authors:HU Xiaoguang  GAO Shuhui  TONG Xiaochong  CHENG Chengqi  CAI Nengbin
Affiliation:1. Institute of Forensic Science, People's Public Security University of China, Beijing 100038, China;2. Institute of Surveying and Mapping, Information Engineering University, Zhengzhou 450001, China;3. College of Engineering, Peking University, Beijing 100871, China;4. Shanghai Key Laboratory of Criminal Scene Evidence, Shanghai 200083, China
Abstract:The rich decision-making basis are provided for police work by police spatial big data.But some challenges are also brought by it,such as:large data integration complex,multi scale information related difficulties,the location identification is not unique.Thus,how to make the data better service to the police work reform and development is a problem need to be study.In this paper,we propose location identification method to solve the existing problems.Based on subdivision grid,we design the location encoding method of police spatial big data,and choose domicile location identification as a case.Finally,the prospect of its application is presented.So,a new idea is proposed to solve the problem existing in the police spatial data organization and application.
Keywords:police spatial big data  location identification  location coding  subdivision grid
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《测绘学报》浏览原始摘要信息
点击此处可从《测绘学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号