首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Luminescence chronometry and geomorphic evidence of active fold growth along the Kachchh Mainland Fault (KMF), Kachchh, India: Seismotectonic implications
Authors:George Mathew  Ashok K Singhvi  Rama V Karanth
Institution:aPlanetary and Geosciences Division, Physical Research Laboratory, Ahmedabad-380 009, India;bDepartment of Earth Sciences, Indian Institute of Technology, Bombay, Powai-400 076, India;cDepartment of Geology, M. S. University of Baroda, Vadodara-390 009, India
Abstract:The Kachchh region of Western India is a pericratonic basin experiencing periodic high magnitude earthquakes events. In 2001 a catastrophic seismic event occurred at Bhuj measuring Mw = 7.7. The epicenters of both the 1956 and 2001 earthquakes were along the Kachchh Mainland Fault (KMF), proximal to the eastern end of the Northern Hill Range (NHR). The latter is a topographic expression of an active fault related fold on the hanging wall, and is controlled by a south dipping blind thrust.The present study deals with the eastern sector of NHR and uses optical dating to reconstruct the chronology of tectonically caused incisions. Along the backlimb of the NHR, incision ages on, channel fills and valley fill terraces progressively decrease from not, vert, similar 12 ka to 4.3 ka. This age progression along with geomorphic evidences (decrease in topographic relief, drainage capture and drainage migration across the fold nose) suggests an active vertical and lateral fold growth along the KMF. Optical ages suggest that during the Late Holocene, the average uplift rate along the eastern NHR was 10 ± 1 mm/a. Recent GPS based estimates on crustal shortening are not, vert, similar 12 mm/a.The KMF and the South Wagad Fault (SWF) represent the bounding faults of a transtensional basin that formed during the initial rifting. This basin is termed as the Samakhiali basin. The compressive stresses on account of structural inversion from normal to reverse phase resulted in lobate-shaped anticlines along KMF and SWF zone. These anticlines subsequently coalesced and formed linked and overlap segments. The present study suggests that eastward lateral deformation across the eastern portion of KMF has continued and has now resulted in its interaction with a left step over transfer fault called the South Wagad Master Fault (SWMF). This implies an increasing transpersional deformation of the Samakhiali basin. We therefore, suggest that the eastward NHR ridge propagation along KMF resulted in the thrust faulting on the south dipping SWMF resulting in the Bhuj 2001 event. The increasing strain on this basin may cause enhanced seismicity in the future along the eastern KMF and Wagad region.
Keywords:Kachchh  Kutch  Bhuj  Uplift  Earthquake  Active tectonics  Optical dating
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号