首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical study of the coupled hydro-mechanical effects in dynamic compaction of saturated granular soils
Authors:Ali Ghassemi  Ali Pak  Hadi Shahir
Institution:Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
Abstract:Dynamic compaction is a widely used method for improvement of loose granular deposits. Its applicability in saturated layers generally considered to be less effective because of the fact that part of the applied energy is absorbed by pore water. Up to now the majority of numerical simulations have focused on the analysis of dynamic compaction in dry/moist soils. In this paper, a fully coupled hydro-mechanical finite element code has been developed and employed to evaluate the dynamic compaction effects on saturated granular soils. After verification of the results by comparing the numerical results with those measured in a real field case of DC treatment in a highway, some sensitivity analyses have been performed to evaluate the effect of water phase on the dimensions of the zone of improvement in the soil beneath the tamper. The results indicate that in the DC process the soil demonstrate two different behaviors. At the very early stage after impact, the soil behaves in an undrained manner and high oscillation of pore pressure occurs. After this phase, consolidation begins during which the pore-water-flow out of the soil mass takes place. The numerical analysis reveals that most of the DC improvement occurs during the undrained phase. The main mechanism responsible for the densification of soil during the undrained phase seems to be the compressibility of pore water. The simulation results indicate that the improvement zone diminishes when the degree of saturation increases.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号