首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Orbital Migration Of Giant Planets: Using Numerical Integration To Investigate Consequences For Other Bodies
Authors:Sleep  Peter N
Institution:(1) Department of Physics and Astronomy, Open University, Walton Hall, Milton Keynes, UK.
Abstract:A number of extrasolar planets have been detected in close orbits around nearby stars. It is probable that these planets did not form in these orbits but migrated from their formation locations beyond the ice line. Orbital migration mechanisms involving angular momentum transfer through tidal interactions between the planets and circumstellar gas-dust disks or by gravitational interaction with a residual planetesimal disk together with several means of halting inward migration have been identified. These offer plausible schemes to explain the orbits of observed extrasolar giant planets and giant planets within the Solar System. Recent advances in numerical integration methods and in the power of computer workstations have allowed these techniques to be applied to modelling directly the mechanisms and consequences of orbital migration in the Solar System. There is now potential for these techniques also to be applied to modelling the consequences of the orbital migration of planets in the observed exoplanetary systems. In particular the detailed investigation of the stability of terrestrial planets in the habitable zone of these systems and the formation of terrestrial planets after the dissipation of the gas disk is now possible. The stability of terrestrial planets in the habitable zone of selected exoplanetary systems has been established and the possibility of the accretion of terrestrial planets in these systems is being investigated by the author in collaboration with Barrie W. Jones (Open University), and with John Chambers (NASA-Ames) and Mark Bailey of Armagh Observatory, using numerical integration. The direct simulation of orbital migration by planetesimal scattering must probably await faster hardware and/or more efficient algorithms. This revised version was published online in July 2006 with corrections to the Cover Date.
Keywords:Accretion  exoplanetary system  extrasolar planets  numerical integration  orbital migration  stability
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号