首页 | 本学科首页   官方微博 | 高级检索  
     


A discrete thermodynamic approach for anisotropic plastic–damage modeling of cohesive‐frictional geomaterials
Authors:Q. Z. Zhu  C. B. Zhou  J. F. Shao  D. Kondo
Affiliation:1. Laboratory of Mechanics of Lille, UMR 8107 CNRS, Cité Scientifique, 59655 Villeneuve d'Ascq, France;2. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, People's Republic of China
Abstract:A discrete plastic–damage model is developed for cohesive‐frictional geomaterials subjected to compression‐dominated stresses. Macroscopic plastic strains of material are physically generated by frictional sliding along weakness planes. The evolution of damage is related to the evolution of weakness planes physically in connection with the propagation of microcracks. A discrete approach is used to account for anisotropic plastic flow and damage evolution, by introducing two stress invariants and one plastic hardening variable for each family of sliding weakness planes. Plastic flow in each family is coupled with damage evolution. The proposed model is applied to typical geomaterials and comparisons between numerical predictions and experimental data are presented. Copyright © 2009 John Wiley & Sons, Ltd.
Keywords:plasticity  damage  induced anisotropy  discrete approach  cohesive‐frictional material  microcracks
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号