首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The importance of the effective intermediate principal stress (σ2) to fault slip patterns
Authors:Alan P Morris  David A Ferrill
Institution:aDepartment of Earth, Material, and Planetary Sciences, Southwest Research Institute®, 6220 Culebra Road, San Antonio, TX 78238, USA
Abstract:In normal faulting regimes, the magnitudes and orientations of the maximum and minimum principal compressive stresses may be known with some confidence. However, the magnitude of the intermediate principal compressive stress is generally much more difficult to constrain and is often not considered to be an important factor. In this paper, we show that the slip characteristics of faults and fractures with complex or nonoptimal geometry are highly sensitive to variation or uncertainty in the ambient effective intermediate principal stress (σ2). Optimally oriented faults and fractures may be less sensitive to such variations or uncertainties. Slip tendency (Ts) analysis provides a basis for quantifying the effects of uncertainty in the magnitudes and orientations of all principal stresses and in any stress regime, thereby focusing efforts on the most important components of the system. We also show, for a normal faulting stress regime, that the proportion of potential surfaces experiencing high slip tendency (e.g., Ts ≥ 0.6) decreases from a maximum of about 38% where σ2 = σ3, to a minimum of approximately 14% where σ2 is halfway between σ3 and σ1, and increases to another high of approximately 29% where σ2 = σ1. This analysis illustrates the influence of the magnitude of σ2 on rock mass strength, an observation previously documented by experimental rock deformation studies. Because of the link between fault and fracture slip characteristics and transmissivity in critically stressed rock, this analysis can provide new insights into stress-controlled fault transmissivity.
Keywords:Faults  Stress analysis  Slip tendency  Rock strength  Transmissivity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号