首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Outline of the fault zone drilling project by NIED in the vicinity of the 1995 Hyogo-ken Nanbu earthquake, Japan
Authors:Ryuji Ikeda
Institution:National Research Institute for Earth Science and Disaster Prevention, Tennodai 3-1, Tsukuba 305-0006, Japan (email:;)
Abstract:Abstract Three boreholes, 1001 m, 1313 m and 1838 m deep, were drilled by the National Research Institute for Earth Science and Disaster Prevention (NIED) in the vicinity of the epicenter of the 1995 Hyogo-ken Nanbu (Kobe) earthquake to investigate tectonic and material characteristics near and in active faults. Using these boreholes, an integrated study of the in situ stress, heat flow, and material properties of drill cores and crustal resistivity was conducted. In particular, the Nojima–Hirabayashi borehole was drilled to a depth of 1838 m and directly intersected the Nojima Fault, and three possible fault strands were detected at depths of 1140 m, 1313 m and 1800 m. Major results obtained from this study include the following: (i) shear stress around the fault zone is very small, and the orientation of the maximum horizontal compression is perpendicular to the surface trace of faults; (ii) from the results of a heat flow study, the lower cut-off depth of the aftershocks was estimated to be roughly 300°C; (iii) cores were classified into five types of fault rocks, and an asymmetric distribution pattern of these fault rocks in the fracture zones was identified; (iv) country rock is characterized by a very low permeability and high strength; and (v) resistivity structure can be explained by a model of a fault extending to greater depths but with low resistivity.
Keywords:1995 Hyogo-ken Nanbu earthquake  controlled source audio magnetotelluric survey  fault core  heat flow              in situ stress  Kobe earthquake  Nojima Fault  permeability  scientific drilling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号