首页 | 本学科首页   官方微博 | 高级检索  
     


ENSO in a hybrid coupled model. Part I: sensitivity to physical parametrizations
Authors:H. -H. Syu  J. D. Neelin
Affiliation:(1) Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA, US;(2) Department of Atmospheric Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA E-mail: neelin@atmos.ucla.edu, US
Abstract: A hybrid coupled model (HCM) for the tropical Pacific ocean-atmosphere system is used to test the effects of physical parametrizations on ENSO simulation. The HCM consists of the Geophysical Fluid Dynamics Laboratory ocean general circulation model coupled to an empirical atmospheric model based on the covariance matrix of observed SST and wind stress anomaly fields. In this two-part work, part I describes the effects of ocean vertical mixing schemes and atmospheric spin-up time on ENSO period. Part II addresses ENSO prediction using the HCM and examines the impact of initialization schemes. The standard version of the HCM exhibits spatial and temporal evolution that compare well to observations, with irregular cycles that tend to exhibit 3- and 4-year frequency-locking behavior. Effects in the vertical mixing parametrization that produce stronger mixing in the surface layer give a longer inherent ENSO period, suggesting model treatment of vertical mixing is crucial to the ENSO problem. Although the atmospheric spin-up time scale is short compared to ENSO time scales, it also has a significant effect in lengthening the ENSO period. This suggests that atmospheric time scales may not be truly negligible in quantitative ENSO theory. Overall, the form and evolution mechanism of the ENSO cycle is robust, even though the period is affected by these physical parametrizations. Received: 17 April 1998 / Accepted: 22 July 1999
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号