首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Coastal Evolution Over the Past 3000 Years at Conrads Beach,Nova Scotia: the Influence of Local Sediment Supply on a Paraglacial Transgressive System
Authors:Tanya C Forde  Mladen R Nedimovi?  Martin R Gibling  Donald L Forbes
Institution:1.Department of Earth Sciences,Dalhousie University,Halifax,Canada
Abstract:Many coastlines are retreating in response to sea level rise, compounded by glacial–isostatic subsidence in areas marginal to former ice sheets. The resulting barrier and estuarine deposits are dominated by transgressive stratigraphy. Where supplied primarily from relict glacial deposits, this “paraglacial” sediment input may rise and fall, increasing as a new source such as a drumlin headland is exposed to erosion but declining as the source becomes exhausted. Conrads Beach, on the Atlantic coast of Canada, has experienced a succession of barrier growth and reworking as sediment supply from several drumlin sources has varied over the past 3000 years. In the context of long-term regional transgression, there have been intervals of years to centuries characterized by local stability or progradation. Ground-penetrating radar profiles and refraction seismic data were used to image the facies architecture of Conrads Beach to depths of 6–8 and 10–24 m, respectively. Thirteen vibracores provided a record of lithofacies characteristics and geometry. Results show evidence of an estuarine basin at ~2800 years BP. As the outer coast retreated, erosion of drumlins provided multi-century sediment pulses to adjacent beaches and embayments. Locally increased sediment supply fed a prograding beach ridge complex from >600 to ~150 years BP and tidal channels feeding sediment to back-barrier flood delta deposits. This study documents the complexity of coastal adjustment to time- and source-varying sediment supply under long-term rising sea level. It expands and refines previous models, providing guidance required for effective management and hazard mitigation on transgressive paraglacial coasts.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号