首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Pilot Block Method Methodology to Calibrate Stochastic Permeability Fields to Dynamic Data
Authors:Mickaele Le Ravalec-Dupin
Institution:1.IFP,Rueil-Malmaison Cedex,France
Abstract:In the present paper, a new geostatistical parameterization technique is introduced for solving inverse problems, either in groundwater hydrology or petroleum engineering. The purpose of this is to characterize permeability at the field scale from the available dynamic data, that is, data depending on fluid displacements. Thus, a permeability model is built, which yields numerical flow answers similar to the data collected. This problem is often defined as an objective function to be minimized. We are especially focused on the possibility to locally change the permeability model, so as to further reduce the objective function. This concern is of interest when dealing with 4D-seismic data. The calibration phase consists of selecting sub-domains or pilot blocks and of varying their log-permeability averages. The permeability model is then constrained to these fictitious block-data through simple cokriging. In addition, we estimate the prior probability density function relative to the pilot block values and incorporate this prior information into the objective function. Therefore, variations in block values are governed by the optimizer while accounting for nearby point and block-data. Pilot block based optimizations provide permeability models respecting point-data at their locations, spatial variability models inferred from point-data and dynamic data in a least squares sense. A synthetic example is presented to demonstrate the applicability of the proposed matching methodology.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号