首页 | 本学科首页   官方微博 | 高级检索  
     


Vertical stability of periodic solutions around the triangular equilibrium points
Authors:E. Perdios  C. G. Zagouras
Affiliation:(1) University of Patras, Greece
Abstract:The vertical stability character of the families of short and long period solutions around the triangular equilibrium points of the restricted three-body problem is examined. For three values of the mass parameter less than equal to the critical value of Routh (μ R ) i.e. for μ = 0.000953875 (Sun-Jupiter), μ = 0.01215 (Earth-Moon) and μ = μ R = 0.038521, it is found that all such solutions are vertically stable. For μ > (μ R ) vertical stability is studied for a number of ‘limiting’ orbits extended to μ = 0.45. The last limiting orbit computed by Deprit for μ = 0.044 is continued to a family of periodic orbits into which the well known families of long and short period solutions merge. The stability characteristics of this family are also studied.
Keywords:Restricted problem  periodic orbits  linear stability
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号