The Baffin Bay lavas and the value of picrites as analogues of primary magmas |
| |
Authors: | Don Francis |
| |
Affiliation: | (1) Department of Geological Sciences, McGill University, 3450 University Street, H3A 2A7 Montreal, Quebec |
| |
Abstract: | The Baffin Bay picrites have been the focal point of a controversy concerning the MgO content of primary magmas derived from the upper mantle. A sample population of 48 lava chilled margins collected across the Baffin Bay volcanic succession at the northeastern tip of Padloping Island exhibits a prominent compositional mode between 14 and 16 weight percent MgO (19–22 Mg, cation units = Mg/100 cations). The petrography of these samples, however, requires that the Padloping magmas were mixtures of olivine crystals and liquid at their eruption. Olivine phenocrysts constituted 15 to 30 volume percent of these magmas and retain compositions requiring coexisting liquid compositions with only 10 to 13.5 weight percent MgO (14–18.5 Mg). However, highly magnesian, olivine xenocrysts (up to Fo 93) found in the most magnesian lavas require the former existence of liquids with at least 18 weight percent MgO (24 Mg). If these xenocrysts represent early cumulates, then the primary liquids of the Padloping suite must have been at least this MgO rich with temperatures greater than 1,425° C. Such primary liquids could have evolved by olivine crystallization to a steady state, equilibrated crystal — liquid mixtures in a shallow reservoir system prior to eruption. The compositions of the liquids of these mixtures appear to have been perched at the point of plagioclase saturation at approximately 1,275° C.Despite the complications of mechanical sorting of olivine crystals, the virtual compositional reciprocity of olivine addition and olivine fractionation requires that the bulk compositions of picritic lavas provide compositional analogues of their primary magmas. A comparison of Phanerozoic picrite suites indicates that the Fe contents of terrestrial primary magmas of tholeiitic affinity have a restricted range from 6–9 Fe. Primary magmas associated with intra-plate volcanism appear to be distinctly more Fe-rich than those associated with inter-plate volcanism. The Al/Si ratios of Phanerozoic picrite suites could suggest that the primary magmas of MORB volcanism have equilibrated with relatively Fe-poor source regions at deeper levels in the Earth's mantle than those of other tholeiitic primary magmas. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|