首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A limit for gravitational collapse
Authors:R K Thakur
Institution:1. Department of Physics, Ravishankar University, Raipur, (M.P.), India
Abstract:Earlier, under certain simplifying assumptions, on the basis of the General Theory of Relativity, it has been concluded by many authors that when the radius of a gravitationally collapsing spherical object of massM reaches the critical value of the Scharzschild radiusR s=2GM/c 2, then, in a co-moving frame, the object collapses catastrophically to a point. However, in drawing this conclusion due consideration has not been given to the nuclear forces between the nucleons. In particular, the very strong ‘hard-core’ repulsive interaction between the nucleons which has the range ~0.4×10?13 cm has been totally ignored. On taking into account this ‘hard-core’ repulsive interaction, it is found that no spherical object of massM g can collapse to a volume of radius smaller thanR min=(1.68×10?6)M 1/3 cm or to a density larger than ρmax=5.0 × 1016 g cm?3. It has also been pointed out that objects of mass smaller thanM c~1.21×1033 g can not cross the Schwarzschild barrier and gravitationally collapse. The only course left to the objects of mass less thanM cis to reach the equilibrium as either a white dwarf or a neutron star.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号