首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust
Authors:Janne Blichert-Toft  Francis Albarède
Institution:1. ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and GEMOC, Dept. Earth and Planetary Sciences, Macquarie University, NSW 2109, Australia;2. VS Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia;3. Scientific Investigation Geology Enterprise, ALROSA Co Ltd, Mirny, Russia;4. ARC Centre of Excellence for Core to Crust Fluid Systems, Dept of Applied Geology, Curtin University, G.P.O. Box U1987, Perth 6845, WA, Australia
Abstract:New bulk Hf and Pb isotope data were obtained for 63 leached single zircons from Jack Hills (JH), Western Australia, using solution chemistry and, respectively, MC-ICP MS and ICP-MS. With the exception of one “young” zircon at 3.32 Ga, the remainder of the selected grains were previously dated at > 3.9 Ga by ion-microprobe. This work extends and complements the solution chemistry data of Harrison et al. Harrison, T.M., Blichert-Toft, J., Müller, W., Albarède, F., Holden, P., Mojzsis, S.J., 2005. Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga. Science 310, 1947–1950.] but uses bulk rather than in situ Pb–Pb ages to interpret the Hf isotope data. This larger data set is used to explore whether the host rocks of the JH zircons formed as a succession of pulses or rather as a single event, and to calculate the age and assess the nature of their crustal protolith. We find that the parent granites of the JH zircons analyzed here formed during a single pulse 4.1 ± 0.1 Ga ago by the remelting of a 4.30–4.36 Ga old protolith. Monte Carlo modeling indicates that the 176Lu/177Hf ratios of this material (< 0.01) are unlike the ratios of modern-type oceanic crust and island arc rocks but rather fit a tonalite–trondhjemite–granodiorite (TTG) source. TTGs themselves derived their inordinately enriched character from a basaltic progenitor which corresponds to the missing enriched reservoir identified by the 143Nd–144Nd, 142Nd–144Nd, and 176Hf/177Hf systematics of Archean rocks. We speculate that crystallization of the magma ocean in the presence of garnet left the upper mantle and an early basaltic crust enriched in incompatible elements. Reaction of this early crust with the overlying hydrosphere and subsequent foundering into the mantle gave rise at ~ 4.3 Ga to the TTG protolith of the JH granites. Dating the onset of plate tectonics therefore depends on whether TTGs can be considered as subduction zone magmas or not.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号