首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Production rate calculations for cosmic-ray-muon-produced 10Be and 26Al benchmarked against geological calibration data
Institution:1. School of Earth and Environmental Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia;2. School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK;3. Scottish Universities Environmental Research Centre (SUERC), East Kilbride G75 0QF, Scotland, UK;4. British Geological Survey, Edinburgh, EH9 3LA, Scotland, UK;1. Institute of Applied Geology, University of Natural Resources and Life Sciences (BOKU), Peter Jordan-Straße 82, 1190, Vienna, Austria;2. Division of Geochemistry, Lamont-Doherty Earth Observatory, Columbia University, P.O. Box 1000, 61 Route 9W, Palisades, NY 10964, USA;3. Department of Geodynamics and Sedimentology, University of Vienna, Althanstraße 14 (UZA II), 1090, Vienna, Austria;1. Centre de Recherches Pétrographiques et Géochimiques (CRPG), UMR 7358, CNRS - Université de Lorraine, 15 rue Notre Dame des Pauvres, 54500 Vandoeuvre-lès-Nancy, France;2. Laboratoire de Glaciologie, DGES-IGEOS, Université Libre de Bruxelles, 1050 Bruxelles, Belgium;3. ETH Zürich - Geological Institute, Sonnegstrasse 5, 8092 Zürich, Switzerland;4. Research Institute on Mines and Environment (RIME) UQAT-Polytechnique, Montreal, Canada;1. ETH Zürich, Institute of Geochemistry and Petrology, Clausiusstrasse 25, NW, CH-8092 Zürich, Switzerland;2. ETH Zürich, Geological Institute, Sonneggstrasse 5, NO, CH-8092 Zürich, Switzerland;3. ETH Zürich, Ion Beam Physics, Schafmattstrasse 20, HPK H, CH-8093 Zürich, Switzerland;4. Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement (CEREGE), UM 34, CNRS-Aix-Marseille Université-IRD, Technopôle Arbois Méditerranée, BP 80, 13545 Aix-en-Provence Cedex 4, France;5. Instituto Universitario de Xeoloxía “Isidro Parga Pondal” Campus de Elviña s/n, Universidade da Coruña, 15071 A Coruña, Spain;1. Antarctic Research Centre, Victoria University of Wellington, PO Box 600, 6140, Wellington, New Zealand;2. GNS Science, Gracefield, Lower Hutt, Wellington, New Zealand;3. Department of Geography, Durham University, South Road, Durham, DH1 3LE, UK;4. School of Geography Environment and Earth Sciences, Victoria University of Wellington, PO Box 600, 6140, Wellington, New Zealand;5. Department of Nuclear Physics, Research School of Physics and Engineering, The Australian National University, Canberra, ACT, 2601, Australia
Abstract:First, I benchmark existing methods of calculating subsurface 26Al, 10Be, and 14C production rates due to cosmic-ray muons against published calibration data from bedrock cores and mine excavations. This shows that methods based on downward propagation of the surface muon energy spectrum fit calibration data adequately. Of these methods, one that uses a simpler geographic scaling method based on energy-dependent attenuation of muons in the atmosphere appears to fit calibration data better than a more complicated one that uses the results of a global particle transport model to estimate geographic variation in the surface muon energy spectrum. Second, I show that although highly simplified and computationally much cheaper exponential function approximations for subsurface production rates are not globally adequate for accurate production rate estimates at arbitrary location and depth, they can be used with acceptable accuracy for many exposure-dating and erosion-rate-estimation applications.
Keywords:Cosmogenic-nuclide geochemistry  Exposure-age dating  Erosion rate measurement  Production rate calibration  Beryllium-10  Aluminum-26  Carbon-14
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号