首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An experimental investigation of hydroxyl solubility in jadeite and Na-rich clinopyroxenes
Authors:Email author" target="_blank">Geoffrey?David?BromileyEmail author  Hans?Keppler
Institution:(1) Bayerisches Geoinstitut, Universität Bayreuth, 95440 Bayreuth, Germany;(2) Institut für Geowissenschaften, Universitaet Tübingen, 72074 Tübingen, Germany
Abstract:The solubility and incorporation mechanisms of water in synthetic, water-saturated jadeite and Na-rich clinopyroxenes have been experimentally investigated. Infrared spectra for water-saturated jadeite synthesised from 2.0 to 10 GPa show two prominent sharp peaks at 3,373 and 3,613 cm–1 together with several weaker features in the OH-stretching region, indicating that there are at least 5 distinct modes of hydrogen incorporation in the structure. Water solubility in pure jadeite reaches a maximum of about 450 ppm by weight at 2 GPa and slowly decreases with increasing pressure to about 100 ppm at 10 GPa. Solubility can be described by the function cOH=A fH2O0.5 exp (–PDeltaVSolid/RT), where cOH is water solubility in ppm H2O by weight, A is 7.144 ppm/bar0.5, fH2O is water fugacity, and DeltaVSolid=8.019 cm3/mol is the volume change of the clinopyroxene upon incorporation of OH. Jadeite provides a good model for understanding hydrogen incorporation mechanisms in more complex omphacite compositions. Assignment of absorption bands in IR spectra verifies the importance of cation vacancies on the M2 site in providing mechanisms for hydrogen incorporation. However, results also suggest that substitution of lower valency cations onto the M1 site may also be important. Solid solution of jadeite with diopside and in particular, with Ca-Eskola component leads to a drastic increase of water solubility, and the bulk composition has a more important effect on the capacity of omphacite to store water than pressure and temperature. Omphacite is expected to be the major carrier of water in a subducted eclogite after the breakdown of hydrous minerals.Editorial responsibility: W. Schreyer
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号