首页 | 本学科首页   官方微博 | 高级检索  
     


Principal component analysis on sewage sludge characteristics and its implication to dewatering performance with Fe2+/persulfate-skeleton builder conditioning
Authors:Y. Shi  J. Yang  S. Liang  W. Yu  J. Xiao  J. Song  X. Xu  Y. Li  C. Yang  X. Wu  J. Hu  B. Liu  H. Hou
Affiliation:1.School of Environmental Science and Engineering,Huazhong University of Science and Technology,Wuhan,China;2.Universtar Science and Technology (Shenzhen) Co. Ltd.,Shenzhen,China
Abstract:Sludge samples taken from different sources and times may have different characteristics that could affect dewatering performance. In this study, 20 sludge samples from five wastewater treatment plants and different seasons in 1 year were characterized. Pearson correlation analysis indicated that solid content (SC), total suspended solid (TSS), polysaccharides and proteins contents had positive correlations with the capillary suction time (CST), whereas volatile suspended–solid/total suspended solid (VSS/TSS) exhibited negative correlations with CST. Moreover, no correlations between CST and specific resistance to filtration were found among these different sludge samples. The principal component analysis confirmed that only two group variables could represent most of the sludge characteristic parameters. The first set of variables represents the particulate nature of the biotic factors (SC, VSS/TSS, SCOD, TSS, polysaccharides and proteins), and the second set is the pH. CST could not be a reasonable indicator of dewaterability in sludge deep dewatering by Fe2+/S2O8 2?-phosphogypsum composite conditioning. Furthermore, the results of diaphragm filter press dewatering showed that initial SC and VSS/TSS were the most dominant sludge characteristics affecting the solid content of dewatered cake (R p = 0.610, p = 0.016; R p = ?0.838, p = 0.000, respectively) with Fe2+/S2O8 2?-phosphogypsum composite conditioning. Results from this study suggest that dewatering performance is predictable by sludge characteristics parameters for Fe2+/S2O8 2?-phosphogypsum conditioning.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号