首页 | 本学科首页   官方微博 | 高级检索  
     


Intracontinental mountain building in Central Asia as inferred from satellite geodetic data
Authors:A. V. Zubovich  V. I. Makarov  S. I. Kuzikov  O. I. Mosienko  G. G. Shchelochkov
Affiliation:(1) Scientific Station, Russian Academy of Sciences, Bishkek, 720049, Kyrgyzstan;(2) Institute of Environmental Geoscience, Russian Academy of Sciences, a/ya 145, Ulanskii per. 13, Moscow, 101000, Russia
Abstract:The results of longstanding GPS measurements in the northwestern part of Central Asia are discussed. These results impose certain constraints for modeling of intraplate tectonic processes. In the territory covered by observations, the velocity vectors of recent motions of the Earth’s surface relative to the stable portion of Eurasia decrease northward. The plane field of velocities, which rules out the development of extension zones, indicates the impossibility of the mountain building driven by ascending mantle flows beneath the lithosphere of these regions. The nonuniform spatial distribution of the motions is suggestive of the discrete character of the Earth’s crust and its deformation. The crust is brittle, at least in its upper part, and capable of breaking into blocks. The blocks, which move at different velocities, interact with one another and change their original orientation and position, while experiencing independent deformations. This phenomenon has been exemplified in the Tarim Block and the Tien Shan. Within the limits of the constraints imposed by the GPS measurements, the mechanism of intracontinental mountain building related to the lateral flow of asthenospheric material and to the drag of the overlying lithospheric layers is discussed. This mechanism springs from Argand’s ideas [2, 29] and the plate tectonic concept [10, 23]. The upper-mantle convective flow in the direction of the Indian Plate’s motion was the main cause of the crustal deformation. The detachment of the lithospheric mantle from the Indian Plate approximately 25 Ma ago and its subduction beneath the Himalayas and Tibet, along with simultaneous ascent of the remaining crust and uplift of the Tibetan Plateau, allowed the mantle flow to spread far northward beneath the Asian continent. This process is accompanied by consecutive separation and sinking of the cooling asthenospheric material over the entire area from the Himalayas to Siberia as the subcrustal material cools. As a result, the flow velocity decreases, the roof of the active flow plunges, and the lithosphere becomes thicker. The motion and deformation of the lithospheric layers dragged by deep flow cannot follow the asthenospheric flow strictly, owing to the rigidity of the layers. Therefore, a difference of tangential velocities originates between the flow and the lithosphere, thus giving rise to horizontal shear stresses. These stresses affect the overlying lithospheric layers, including the crustal ones, and bring about their drag and tectonic delamination. Simultaneously, the decreasing velocity in the direction of the mantle flow results in bending of the lithospheric layers that is accompanied by local warping of the crust and its stacking and fragmentation into blocks. The different velocities of block motions lead to their mechanical interactions. This scenario of intracontinental mountain building allows an explanation of the many specific features of tectonic processes and orogeny in within-plate mountainous regions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号