首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evolution of the Southern Yellow Sea Cold Water Mass during the last 7 kyr from benthic foraminiferal evidence
Authors:Fuchang Zhong  Rong Xiang  Yiping Yang  Meixun Zhao
Institution:1.Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology,Chinese Academy of Sciences,Guangzhou,China;2.University of Chinese Academy of Sciences,Beijing,China;3.Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education,Ocean University of China,Qingdao,China
Abstract:The Southern Yellow Sea Cold Water Mass (YSCWM) is closely related to the modern circulation system of the east China shelf seas, which has significantly influenced regional marine environmental changes. The study of the Holocene evolution of the YSCWM will greatly improve our understanding of the mechanisms of regional environmental change. Benthic foraminifera are sensitive to bottom water environmental changes and can serve as useful indicators in bottom water environmental reconstruction. In this study, benthic foraminifera were analyzed in core N02 from the northwestern margin of the southern Yellow Sea Mud to decipher the phase evolution of the YSCWM during the last 7 kyr. Benthic foraminifera census counts and Q-mode factor analysis indicate that the Holocene sedimentary environment can be divided into three stages: From 6.9–5.0 ka, the fauna was dominated by Ammonia ketienziensis, indicating that the YSCWM was at its strongest during the last 7 kyr, while the Yellow Sea Coastal Current (YSCC) had a weak influence on the bottom water of the study area. From 5.0–2.9 ka, the relative abundance of Hanzawaia nipponica remarkably increased while the abundance of A. ketienziensis decreased significantly, reflecting that the strength of the YSCWM was relatively weak and the range of the YSCWM might have contracted. The influence of the YSCC on the bottom water might have slightly increased, although its influence was still weak during this time. A notable increase in low-temperature and low-salinity species, such as Protelphidium tuberculatum and Buccella spp. has occurred since 2.9 ka, indicating that the YSCC has had a strong influence on bottom water during this period, while the strength of the YSCWM has been at its weakest during the last 7 kyr. Generally, the influence of the YSCWM and the YSCC on the bottom water properties of the study area show an obvious seesaw pattern, with one’s influence increasing while the other’s influence decreases and vice versa. The fluctuations in the strength of YSCWM during the Holocene may be caused by the different effect allocations of regional climatic factors (i.e. El Niño Southern Oscillation, East Asian Winter Monsoon, summer insolation in the northern hemisphere, etc.) acting on the circulation system during different periods.
Keywords:
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号