首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Characterization and quantification of biomarkers from biomass burning at a recent wildfire site in Northern Alberta,Canada
Institution:1. State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;2. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China;3. International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;4. Woods Hole Research Center, Falmouth, MA, USA
Abstract:The composition of organic matter (OM) in pine vegetation and soil samples from a pine forest which was charred by a wildfire was analyzed using solid-state nuclear magnetic resonance (13C NMR) and gas chromatography–mass spectrometry (GC–MS) of solvent extracts to study the effects of thermal alteration on soil organic matter (SOM). The NMR data revealed the presence of unaltered biomolecules (cellulose, proteins) and low contents of aromatic C (15%) in the charred pine wood and cones while the charred soil samples exhibited higher contents of aromatic C (39–56%). The solvent extraction of charred and uncharred plant and soil samples yielded diterpenoids, triterpenoids, steroids, a series of aliphatic lipids, phenols and carbohydrates indicating the predominant input of higher plant OM and minor contributions from microorganisms and/or fauna. The lower yield of solvent extractable aliphatic lipids in the charred samples versus the uncharred samples suggests that these compounds are thermally degraded during a wildfire. Molecular markers for the burning of cellulose (levoglucosan, mannosan, galactosan) were detected in all charred samples. The comparison of charred and uncharred samples allowed the identification of unaltered pine derived biomolecules and their thermal alteration products in the charred samples. Terpenoid and steroid biomolecules were in part altered during incomplete combustion to aromatic, unsaturated and polar derivatives (“pyromolecules”) that still retained the characteristic skeleton of their precursors. Since some of the polar degradation products found in the charred soils can be generated either from thermal or microbial degradation, the aromatic and unsaturated hydrocarbon products are preferred as molecular markers for SOM burning. Ratios of biological precursors to aromatic (diterpenoids) or unsaturated products (steroids) indicate that the cyclic lipids in the pine wood and the soil surface horizon were highly altered. In conclusion, the solvent extractable lipids and carbohydrates in charred SOM are valuable, source-specific molecular markers for the burning of plant biomass and for tracing the biogeochemistry of charred residues in soils.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号