首页 | 本学科首页   官方微博 | 高级检索  
     


Multimodal structure of the internal tides on the continental shelf of the northwestern South China Sea
Authors:Zhenhua Xu  Baoshu Yin  Yijun Hou
Affiliation:1. Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China;2. Key Laboratory of Ocean Circulation and Waves (KLOCAW), Chinese Academy of Sciences, Qingdao, China
Abstract:Based on the moored current and temperature observations during the summer of 2005, the vertical structure of the internal tides on the continental shelf of the northwestern South China Sea (SCS) is studied. The vertical structure of the internal tides was found to differ greatly between semidiurnal and diurnal constituents. Generally, the diurnal constituents are dominated by the first-mode motions, which are consistent with the overwhelming first-mode signals in the northeastern SCS. In contrast, the semidiurnal internal tides, unlike the predomination of the first-mode variations in the northeastern area, exhibit a higher modal structure with dominate second-mode signals in the observational region. Moreover, although the diurnal internal tides are much stronger than the semidiurnal component, the shear caused by the latter over various scales was found to be significant compared to that induced by the diurnal tides, probably due to the superposition of the first-mode and higher-mode (smaller scale) semidiurnal variations. Further analysis demonstrates that the shear induced by the diurnal internal tides is larger than that induced by the semidiurnal variations around 45 m depth, where the first-mode current reversal in the vertical happens, while below 45 m depth higher-mode semidiurnal internal tides generally produce larger shear than that by the diurnal component. The northwest-propagating semidiurnal internal tides of higher-mode with small vertical scale, probably do not originate from a distant source like Luzon Strait, but were likely generated near the experiment site.
Keywords:internal waves   internal tides   South China Sea   shear
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号